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Abstract

The problem of reconstructing a 3D scene from a mov-
ing camera can be solved by means of the so-called Fac-
torization method. It directly computes a global solution
without the need to merge several partial reconstructions.
However, if the trajectories are not complete, i.e. not ev-
ery feature point could be observed in all the images, this
method cannot be used. We use a Factorization-style al-
gorithm for recovering the unobserved feature positions in
a non-incremental way. This method uniformly utilizes all
data and �nds a global solution without any need of sequen-
tial or hierarchical merging. Two contributions are made
in this work: Firstly, partially known trajectories are com-
pleted by minimizing the distance between the subspace and
the trajectory within an af�ne subspace associated with the
trajectory. This amounts to imposing a global constraint on
the data. Secondly, we propose to further include local con-
straints derived from epipolar geometry into the estimation.
It is shown how to simultaneously optimize both constraints.
By using simulated and real image sequences we show the
improvements achieved with our algorithm.

1. Introduction

One of the oldest problems in computer vision is to esti-
mate the three-dimensional structure of a rigid object from
images taken by cameras moving around it. This is some-
times labeled as thestructure-from-motionproblem. The
classic approach is to �rst establish correspondences be-
tween feature points in the images and then to compute the
structure of the object and the motion of the camera by these
correspondences.

By means of the so-calledFactorizationmethod, it is
possible to compute the3D reconstruction of the shape in
a single step. Its advantage is that it uniformly utilizes
all available data and directly computes a global solution,
i.e. reconstructions from several sub-sequences need not be
merged. However, the use of this method requires that the
correspondences of all feature points must be known across
all images. If not all points could be observed in every im-

age, this method cannot be used. Many algorithms have
been introduced to complete partially observed trajectories.

In the case of an af�ne camera, Tomasi and Kanade [19]
used the fact that the trajectories of a rigid body moving ar-
bitrarily in space are constrained to be in a3-dimensional
af�ne subspace. Their idea was to obtain an initial esti-
mate of this subspace by starting with a completely known
subset of the measurement matrix. A subspace is �tted to
this matrix, and incomplete rows and columns of the to-
tal matrix are incrementally recovered subsequently. The
�rst problem with this method is that �nding the best initial
submatrix is known to be NP-hard, as noticed by Jacobs in
[10]. Secondly, the initially computed subspace may be in-
accurate, and the error is uncontrollably propagated which
might result in a wrong solution.

Jacobs [10] extended this idea and �tted subspaces to
several submatrices given by triples of columns. The author
combines these subspaces to obtain an estimate of the global
subspace. This estimate is then used to �ll in the missing
values. However, this algorithm does not uniformly utilize
the data, and it merges partial reconstructions.

Brand [3] generally showed how to compute the SVD
of a matrix having missing elements. Starting with a com-
pletely known submatrix, the missing row or column ele-
ments are incrementally chosen such that the rank constraint
is minimized. Since this approach is similar to the one of
Tomasi and Kanade, it shares the disadvantages: �nding the
best initial submatrix to start with is NP-hard and the error
made at the initial factorization might cause the algorithm
to fail. Chen and Suter [5] extended Brand's method by us-
ing only certain, reliable trajectories for the subspace esti-
mation. They proposed how to determine these trajectories
and introduced a second stage of their algorithm to �nd a
global optimum. Sugaya and Kanatani [17] select reliable
trajectories at each iteration and iteratively estimate the un-
known parts of trajectories.

Hartley and Schaffalitzky [8] proposed an algorithm to
factorize a matrix having unknown entries without using
any estimates of the unknown values. Marquez and Costeira
[13] introduced a non-incremental method for estimating



the missing data. They iteratively estimate the unobserved
feature points. Additionally, they utilize a constraint onthe
structure of the af�ne camera matrices.

In the case of a perspective camera an often used tech-
nique is to initialize a statistical optimization technique such
asbundle adjustmentwith solutions computed from multi-
linear constraints [6, 9, 16, 18, 20]. Alternatively, it is pos-
sible to use multi-linear constraints and sequentially [1,2]
or hierarchically [7] built up a conjoint reconstruction ofthe
3D shape.

Martinec and Pajdla [14] combine local and global con-
straints: in their iterative algorithm, they alternate between
estimating fundamental matrices and then �tting a subspace
to obtain a projective estimate of the3D shape. Epipolar
geometry is used for recovering the projective depths, and
the subspace constraint to estimate the missing data. In [15]
the same authors propose to combine multiple epipolar con-
straints to estimate the projective depths.

Algorithms using multi-linear or closure constraints use
only observed data, but need to choose particular combi-
nations of images, and combine the partial reconstructions
by some means. Conversely, factorization algorithms, also
called subspace algorithms, utilize all data uniformly and
do not require to sequentially or hierarchically merge par-
tial reconstructions. However, they usually use estimatesof
the unobserved data. The latter might cause them to recon-
struct a heavily distorted shape.

We propose to use a subspace algorithm for completing
the trajectories. Uniformly utilizing all available data,we
are independent of the image ordering. Our algorithm re-
quires neither sequential nor hierarchical merging of partial
reconstructions, and it is not incremental.

The contributions in this work can be summarized as fol-
lows:

1. We utilize the global subspace constraint, and mini-
mize a distance between the trajectory and the esti-
mated subspace. Since only unknown elements of the
trajectory may be changed, an af�ne subspace is as-
sociated with the trajectory, and a simple expression
is derived for minimizing the distance to the subspace
within the af�ne space.

2. We integrate local constraints derived from epipolar
geometry into the algorithm. It is shown how to com-
bine the subspace constraint and the epipolar con-
straints to estimate the missing data simultaneously.

To the best knowledge of the authors, neither one of these
two ideas has been used in the context of completing par-
tially known trajectories.

It has been stated before that subspace algorithms fail
to converge even if few missing data are present since es-
timates are used during the optimization [3]. Conversely,

utilizing only epipolar geometry may fail in the case of de-
generate camera con�gurations [9]. However, if both types
of constraints are combined, these problems can be com-
pensated.

The paper has the following structure. In Sec. 2, we
shortly summarize the subspace constraint. Our result on
missing data estimation using the subspace constraint is de-
rived in Sec. 3.1. The geometric constraints are presented
in Sec. 3.2. We evaluate our algorithm in Sec. 4 using syn-
thetic and real image sequences. The paper concludes with
a brief summary in Sec. 5.

2. Af�ne Subspace Constraint

SupposeN rigidly moving points are tracked throughM
consecutive frames taken by an af�ne camera. The projec-
tion of the � th point onto the� th image can be modeled
by

x �� =

0

@
u��

v��

1

1

A = P� X � + t � (1)

whereu�� andv�� denote the measuredx andy coordi-
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Eq. (1) may now be written as

W = P X + t : (4)

Locating the coordinate origin att , Eq. (4) implies that
the columns ofW are constrained to be in an3-dimensional
af�ne subspace spanned by the columns ofP.

If the origin of the coordinate system is not �xed to
the centroidt , the trajectories are constraint to be in a4-
dimensional subspace. We utilize this fact and directly �t
a 4D subspace to the trajectories. Under the assumption
of independent and identically distributed zero-mean Gaus-
sian noise, a maximum-likelihood estimate of the subspace
can be computed using singular value decomposition of the
matrix de�ned in Eq. (2).



3. Recovery of Partial Trajectories

The Factorization method computes a global and unique
solution to the structure-from-motion problem. However, if
the feature points could not be observed in all images, this
method cannot be used. This happens if there is occlusion
or if problems occur during tracking the feature points. In
this section, an algorithm is described, which can recover
partially observed trajectories.

In the �rst part we utilize the global subspace constraint,
and derive how to minimize the distance between a trajec-
tory and the estimated subspace along an associated af�ne
space. In the second part it is shown how the local epipolar
constraints can be exploited. The last part of this Section
explains how to combine both types of constraints into a
single equation system so that all constraints may be simul-
taneously optimized.

3.1. Subspace Constraint

Consider the following matrix:
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0
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The� symbol denotes missing elements. Letk be the num-
ber of missing elements in one column vectorw � of W .

The idea is to separate the known from the unknown en-
tries of each particular column vector. The known entries
need be kept �xed, but we may choose the missing ones as
we like. Therefore, each vectorw � having unknown entries
gives rise to an af�ne subspace as follows (cf. Fig. 1):

w � = Ay + v: (6)

The origin of this af�ne space is given by the2M -
dimensional vectorv . Each two of its entries equalx ��

if the observation is known and zero otherwise. The vec-
tor y corresponds to the positionsx �� which were not ob-
served, and its length is twice the number of unknown vec-
torsx �� in w � . The basisA of this af�ne space consists of
2k 2M -dimensional basis vectorsei . Each two basis vec-
tors correspond to one unknown observationx �� = ( u v)>

in the vectorw � . The �rst of the two basis vectors equals1
at the coordinate corresponding to the coordinateu of x ��

in the vectorw � ; the second basis vector equals1 at the
coordinate corresponding tov, respectively. They are zero
elsewhere.

The idea is to assign the unknown entries inw � val-
ues which minimize the distance to the subspace. In other
words, we want to minimize the distance betweenw � and
its orthogonal projection onto the subspace. Since only val-

Figure 1. Each vectorw � having unknown entries is separated
into the known and the unknown components. Since the un-
known components may be chosen arbitrarily, they give rise to an
af�ne subspace with the origin being the vector consisting of the
known entries ofw � and being zero otherwise. Here,ei denotes
a 10-dimensional basis vector with itsi th coordinate set to1. The
2-vectors0 are identically zero.

ues for the unknown observations may be chosen, the dis-
tance minimization is performedwithin the af�ne subspace
spanned by the missing entries.

Assume that we are given an orthonormal basisU for
the subspace which spansW , i.e. the column vectors ofU
have unit length and are mutually orthogonal. The miss-
ing entries ofw � are now chosen such that the distance of
w � to the subspace becomes0, i.e. we want the distance
betweenw � and its orthogonal projection̂w � onto U to
become zero:

0 = kw � � ŵ � k2

, 0 = k
�
I � UU> �

w � k2: (7)

Here,I denotes the identity matrix. SinceU is an orthonor-
mal matrix the expression for orthogonal projection is sim-
pli�ed.

Inserting Eq. (6) into Eq. (7), we obtain

0 = k
�
I � UU> �

(Ay + v) k2: (8)

Using normal equations, the solution to Eq. (8) is given by

y = �
��

I � UU> �
A

� + �
I � UU> �

v ; (9)

where(�)+ denotes the general inverse.
If the subspace were known,y could be directly deter-

mined. Conversely, if the complete matrixW were known,
the subspace could be computed. This suggests the follow-
ing algorithm: First, the points inW which could not be
observed are initialized to1. Then, an4D-subspace is �t-
ted toW and the unknown observations are estimated by
Eq. (9). The two steps of subspace �tting and missing data
estimation are repeated until convergence.

3.2. Including Epipolar Constraints

The iterative subspace estimation algorithm presented in
the previous section uses estimated trajectories. Since these



estimates can signi�cantly differ from the true position, an
iterative algorithm alternating between subspace �tting and
missing data estimation may converge to a wrong solution.
The more unknown feature positions, the worse a solution,
computed by using only the subspace constraint. In order
to prevent this, we include local constraints derived from
epipolar geometry.

Utilizing epipolar geometry does not imply that any par-
ticular images are selected. In general, it is dif�cult to ana-
lytically determine the images which are best suited to com-
pute the epipolar geometry, so we integrateall epipolar con-
straints we are able to use.

Given two imagesi andj of the same rigid scene, cor-
responding pointsx i = ( u v 1)>

i and x j = ( u v 1)>
j

between the two images satisfy the af�ne epipolar equation
[9]

x>
j Fji x i = 0 ; (10)

The af�ne Fundamental matrixF is a3 � 3 matrix of rank
2 consisting of �ve parameters

F =

0

@
0 0 a
0 0 b
c d e

1

A : (11)

If there are at least four correspondences between any two
images, it is possible to compute the af�ne Fundamental
matrix by a linear method. Due to the parametrization in
Eq. (11), the matrixF automatically satis�es the rank-2
constraint [9].

If some pointx could not be observed in imageI 0 but it
was observed in other imagesI , we can compute the epipo-
lar lines

l ji = Fji x i ; j 2 I 0; i 2 I (12)

of this point in imageI 0 provided that we know the Funda-
mental matrices between the images.

In the absence of noise and assuming that the cameras
are in general positions, the epipolar lines correspondingto
other cameras which observed the feature point intersect in
a single pointx, i.e.

X

i 2I

l>
i x = 0 (13)

(cf. Fig. 2). The solution to Eq. (13) is the best estima-
tion of the unobserved feature pointx in terms of epipolar
geometry.

In the presence of noise, the epipolar lines do not inter-
sect in a single point. However, as long as the noise in the
observed points of the images is not too large, the intersec-
tions will be close to the true position. Utilizing Eq. (13)
for estimating the unobserved positions implies that an al-
gebraic distance is minimized, not the correct yet hard to
optimize geometrical distance.

Figure 2. Left Image: The af�ne epipolar lines (red lines) intersect
in a single point. Confer to Sec. 4 for detailed information about
the sequence. Right Image: The camera centers are denoted by
C1 , C2 andC3 . The feature point observed in image1 and3 is
denoted byx1 andx3 , respectively. Here,l21 andl23 denote the
epipolar lines induced by planar homographies� 21 and� 23 be-
tween images1 and2, and3 and2, respectively. The intersection
is the best estimation of the unobserved feature in image2 in terms
of epipolar geometry.

Since we do not know which epipolar lines intersect
closest to the true position of the unobserved point, the un-
known position ofx j in imageI 0 may be determined by
least-squares minimization of all the Eqs. (13). Imagine a
sequence of �ve images. A particular feature point was not
observed in images one and two, and the Fundamental ma-
trices could not be computed between images one and �ve.
Denote by(u v 1)>

i the feature in the �rst or second image,
respectively. The joint system of Eqs. (13) then is as follows
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Here, 0 denotes a vector solely consisting of zeros. The
upper right and lower left blocks of the matrix on the left
side are identically zero.

3.3. Joint Optimization

We will now describe how to jointly optimize both types
of constraints. In order to do so, both the Eqs. (8) and (13)
need be merged into a single equation system.

However, Eq. (8) is inhomogeneous while Eqs. (13)
seem to be homogeneous. This is due to the de�nition of
the vectorsx j = ( u v 1)>

j which contain a1 as third coor-
dinate in the context of Eqs. (13). Since only the �rst two
coordinates ofx j may be varied, we subtract all third coef-
�cients of the epipolar linesl ji from both sides of Eqs. (13)

X

j 2I 0

(l1) ji uj + ( l2) ji vj = � (l3) ji : (15)

Here,(lk ) ji denotes thekth coordinate of the epipolar line
l ji .



Figure 3. A schematic of the method introduced in this work. First,
all Fundamental matrices are estimated. Subsequently, thealgo-
rithm alternates between subspace �tting and missing data estima-
tion.

For instance, consider a sequence of �ve images. For
some trajectory� , let two observations in the �rst and sec-
ond images be unknown. The following Fundamental ma-
trices can be computed:F13 (between the third and �rst
image),F14, F23, F24 andF25. LetP =

�
I � UU>

�
, 06� 4

be a6 � 4 matrix solely consisting of zeros, and02 be a2-
vector being identically0. Then, the joint equation system
arising for this case is as shown in Eq. 16:
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The scale of the two equation systems (8) and (15) is
different, so they need be normalized. Since any scaling
of the rows of Eq. (8) changes the geometrical meaning, we
adjust Eqs. (15). We determine the scale factor for Eqs. (15)
so that the vector on the right side has the same length as the
vector on the right side of Eq. (8).

Whenever it is possible to compute a Fundamental ma-
trix we include the corresponding epipolar constraints into
the estimation. All epipolar lines are indiscriminately uti-
lized without considering possible degenerate camera posi-
tions. For some images, however, there are no correspon-
dences between images in which a particular point was ob-
served and the images where the point could not be ob-
served. In this case, we complete the trajectories by only
minimizing the distance to the subspace, i.e. only the sub-
space constraint is utilized then. A scheme of the �nal al-
gorithm is shown in Fig. 3.

4. Experimental Results

In this Section we evaluate the algorithm introduced in
this paper. Firstly, the performance is measured using a
synthetic image sequence. The accuracy is calculated for
different ratios of missing data and different levels of noise.
Secondly, the method is tested on real image sequences.

4.1. Synthetic Sequence

We created a synthetic image sequence of200points on
a cylindrical surface shown in Fig. 4(a). The points were
projected into images of size512 � 512 pixels by a per-
spective camera with focal length600pixels. The sequence
consists of20 images.

Using this data, our algorithm is compared with Power-
Factorization [8]. This algorithm estimates the left and right
subspace of the input matrix by only considering the known
entries. We used the implementation kindly provided by
Buchanon [4]1.

Incomplete trajectories were simulated by randomly re-
moving a certain percentage of points. This simulates tra-
jectories as might be created using a SIFT tracker [12],
where feature points are missing in one frame, but may
reappear in subsequent images. The accuracy of the algo-
rithm was measured by computing the Frobenius norm be-
tween the matrix consisting of recovered trajectories and the
matrix consisting of the ground-truth trajectories. Further-
more the3D error was computed by computing the homog-
raphy which optimally projects the reconstructed shape to
the ground-truth shape. The average Euclidean distance be-
tween the3D points was taken as measure. Both algorithms
were iterated until convergence. PowerFactorization was
randomly started100times and the best result was used.

To determine how robust the proposed algorithm is to
missing points, we sampled the sequence in Fig. 4(a) ten
times for sampling ratios ofr = 10%; 20%; : : : ; 70%. Re-
sults are shown in the two leftmost plots of Fig. 4(b). The
left of the two plots correspond to the Frobenius norm be-
tween the reconstructed matrix and the ground-truth one,
the right plot the3D error. The solid line indicates the mean
error of the ten trials of our algorithm, the dashed line the
maximum error; the dotted line the mean error of Power-
Factorization, the dash-dotted line the maximum error. Both
algorithms perform almost identically for low sampling ra-
tios. For a large amount of unobserved points, the proposed
algorithm converges more reliably to a good solution. For
70%, our method failed only once to compute a very accu-
rate solution while PowerFactorization computed a satisfac-
tory solution only twice and even failed to converge in two
more trials.

To determine how susceptible the proposed algorithm is
to noise, we �xed the number of missing data to60% and

1www.robots.ox.ac.uk/ amb



(a)

(b)

Figure 5. (a) The three images show the �rst, an intermediate, and
the last frame of the182-image hotel sequence. It consists of816
trajectories. (b) The �rst, an intermediate, and the last image of a
sequence of an industrial dredger are shown. The sequence con-
sists of50 frames and464points.

increasingly added normally distributed noise with standard
deviation� = 0 ; 0:5; : : : ; 3:0. The results are shown in the
two rightmost plots of Fig. 4(b). Our method recovers the
trajectories same as good as PowerFactorization while the
accuracy of the reconstructed3D shape is somewhat better.
Although we tried PowerFactorization1500times, it failed
to compute an accurate solution in one trial for� = 0 .

For both experiments, the proposed algorithm was �ve
to �fty times faster than PowerFactorization.

4.2. Real Image Sequences

The performance of the algorithm was evaluated using
two different real image sequences.

First, we used the sequence of the model of a hotel2.
It consists of182 images. Three of them are shown in
Fig. 5(a). The publicly availablevoodoo camera tracker3

was utilized for establishing a total of816correspondences.
Due to brightness changes, the tracker looses almost all
points around frame55, so the amount of missing data is
approximately55%. The top diagram in Fig. 6 shows which
feature was found in which image (black indicates that the
feature was observed in the respective frame). By visual
inspection we conclude that outliers are not present in this
data set.

After completing the trajectories using the approach
from Sec. 3, we reconstructed the af�ne3D shape and mo-
tion with the algorithm from [11]. Four images of the re-
constructed shape are shown in Fig. 7. The overall quality
of the shape is satisfactory. However, some angles are not
exactly rectangular as they ought be. This is a well-known
problem due to the use of the af�ne camera model whereas
the images were created using a perspective camera [6, 9].

The second sequence shows an industrial dredger. In
this sequence, the camera moves freely around the object.
A total of 464 points were tracked over50 frames. The

2www.ius.cs.cmu.edu
3www.digilab.uni-hannover.de/docs/manual.html

�rst, middle and last images of the sequence are shown in
Fig. 5(b). The correspondences were also established us-
ing the voodoo camera tracker. Although the overall quality
of the correspondences is good, some outliers are present
in the tracking data. However, we did not employanyout-
lier rejection, neither for estimating the subspace nor for
computing the Fundamental matrices. In this sequence ap-
proximately20%of the feature points were not be observed
due to occlusion and lost trajectories. For the recovery of
the trajectories, we used all feature points tracked over at
least twenty frames. The observation matrix which shows
in which frames each feature could be observed is shown in
the bottom Fig. 6.

Although the amount of missing data seems to be low,
this sequence is especially challenging: the depth varia-
tion within the sequence amounts to the distance between
camera and dredger, at least, and thus perspective distor-
tion is strong. For many images the depth variation within
the scene is multiple times larger than the distance between
camera and scene. This violates the af�ne camera model
assumption which requires that the depth variation in the
scene is negligible compared with the distance to the cam-
era.

After having recovered the trajectories, we used an af�ne
3D-reconstruction algorithm [11]. Two images of the recon-
structed3D shape are shown Fig. 8(a). We assigned each
3D point the average color over all images it was observed
in. As can be seen the reconstruction looks reasonable,
and the distortion due to the af�ne camera model is low.
For the purpose of better visualization, the reconstructed
shape was manually augmented by adding texture patches
obtained from the images. The resulting images are shown
in Fig. 8(b).

5. Conclusions

In this paper, we introduced a method to recover partial
trajectories for af�ne3D-reconstruction. It uniformly uti-
lizes all available data and non-incrementally computes a
global solution.

Local and global constraints on rigid scenes are jointly
optimized. The cost function utilized to enforce the sub-
space constraint has not been used in the context of re-
covering partial trajectories. An expression was derived
how to minimize the distance to the subspace in the direc-
tion of the unknown data. The use of the global subspace
constraint was complemented by including as many local
epipolar constraints as possible. We showed how to simul-
taneously optimize both constraints.

The effectiveness of the proposed method was demon-
strated by simulated and real image sequences without us-
ing any outlier rejection strategy. Epipolar lines arising
from cameras being in degenerate positions were not ex-
cluded from the estimation. For the simulated sequence, it
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Figure 4. (a) Simulated image sequence of 200 points on a cylindrical surface through 20 frames (six images are shown here). (b) Left left
two plots correspond to a noise-free experiment in which theamount of unobserved points was gradually increased. The right two plots
correspond to an experiment in which the noise was graduallyincreased (the amount of missing data was �xed to60%). The solid line
indicates the mean error of ten trials of the proposed algorithm, the dashed line the maximum error. The dotted line indicates the mean
error achieved using PowerFactorization, the dash-dottedline indicates the maximum error.

Figure 7. Reconstructed shape corresponding to the182 image sequence shown in Fig. 5(a). The sequence consists of816 trajectories and
the the missing data amounts to approximately55%. As can be seen, the shape looks satisfactory. Due to the use of the af�ne camera
model some angles are distorted which is shown in the fourth image (top-view).

was shown that the trajectories were accurately recovered.
For the two real image sequences, af�ne3D shapes com-
puted from the recovered trajectories were satisfactory. The
solution of this algorithm can be used to initialize a statisti-
cal optimization technique such as bundle adjustment.
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Figure 8. Reconstructed shape corresponding to the sequence shown in Fig. 5(b).464 trajectories were tracked over50 images. The
amount of missing data was approximately20%. Although the depth variation within the scene is larger than the distance between camera
and dredger, the reconstructed shape looks reasonable. Forthe upper two images we computed the average colors of the features over all
images which the points could be observed in. The right imagein Fig. 8(a) shows the scene viewed from above. We manually augmented
the shapes shown in Fig. 8(b) by texture patches obtained from the original images.
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Figure 6. Visibility of the tracked feature points, i.e. which point
(y-axis) was observed in which image (x-axis). The black color in-
dicates that the feature could be observed, white that it wasnot ob-
served. The upper �gure corresponds to the hotel sequence shown
in Fig. 5(a) (missing data ratio of approximately 55%), the lower
to the sequence shown in Fig. 5(b) (missing data ratio of approxi-
mately 20%).
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