Region-based Pose Tracking
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Abstract. This paper introduces a technique for region-based podanigwith-
out the need to explicitly compute contours. We assume acairhodel of a rigid
object and at least one calibrated camera view. The goal iztthe pose pa-
rameters that optimally t the model surface to the contofithe object seen in
the image. In contrast to conventional contour-based tqaks, which acquire
the contour to be extracted explicitly from the image, oysrapch optimizes an
energy directly de ned on the pose parameters. We show erpatal results for
rather challenging scenes observed with a monocular araenstamera system.

1 Introduction

The task to pursuit the 3-D position and orientation of a kn@D object model from a
2-D image data stream is called 2-D—3-D pose tracking [8¢ fiéed for pose tracking
occurs in several applications, e.g. self localization abgkct grasping in robotics,
or camera calibration. Particularly in scenes with clattebackgrounds, noise, partial
occlusions, or changing illumination, pose tracking i#f atchallenging problem even
after more than 25 years of research [10].

A lot of different approaches to pose tracking have beenidensd [7,12]. In [6], an
iterative algorithm for real-time pose tracking of artiatdd objects, which is based
on edge detection, has been proposed. Often points [1]&s [2] are used for feature
matching, but other features such as vertices, t-junctmreps, three-tangent junctions,
limb and edge injections, and curvature L-junctions hage Akeen considered [9].
Another way to approach pose estimation is to match a surfexxtel of the object to
be tracked to the object region in the images. Thereby, thgatation of this region
yields a typical segmentation problem. It has been proptzsegtimize a coupled for-
mulation of both problems and to solve simultaneously fer ¢bntours and the pose
parameters via graph cuts [3] or via iterative approachp#\though the coupled es-
timation of contours and pose parameters is bene cial caetpto the uncoupled case,
segmentation results can be inaccurate, as seen in Figure 1.
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Fig. 1. Problems often occurring in variational segmentation @igms: (a) An inaccurate seg-
mentation. Note the split up into multiple connected congods. (b) An error due to oversmooth-
ing and another kind of undesired topological change.

In this paper, we build upon the method in [4] including itatistical representation
of regions. However, instead of estimating 2-D segmemaditd 3-D pose parameters
separately we directly estimate 3-D pose parameters bymiginig the projection error
in the respective 2-D images. Consequently, we can estisegt@entations which are
by construction consistent with the 3-D pose. Moreover gstimation of an in nite-
dimensional level set function is replaced by the optinigrabf a small number of pose
parameters. This results in a drastic speed-up and neaimeaperformance.

In the next section, we will brie y review pose estimatiomifn 2-D—3-D point corre-
spondences. We will then explain our approach in Sectionl®yvied by experimental
results in Section 4. Section 5 concludes with a summary.

2 Pose Estimation from 2-D-3-D Point Correspondences

This section introduces basic concepts and notation amdyhbdiescribes the point-
based pose estimation algorithm used in our approach [12n&Gome 3-D points;

on the object, which are visible as 2-D poingtsn an image, the algorithm seeks a rigid
body motionx such that each poing is on the line passing through and the camera
origin. Section 3 shows how such point correspondencedsaaened with our method.

2.1 Rigid Motion and Twists

A rigid body motion in 3-D can be representedrasx : Rx t, wheret 3is

a translation vector anR SO 3 is a rotation matrix withSO3 : R 3 3:
detR 1 .By means of homogeneous coordinates, we can wris a matrixvi:
mx X Xgs' MxgXx3l!' Reats1 (1)
003 1

The set of all matrices of this kind is called thi&e group SE3 . To every Lie group
there is an associated Lie algebra. Its underlying vectacesfs the tangent space of the



Lie group evaluated at the origin. The Lie algebra assogiafth the Lie grougSO 3
isso3 : A 33AT A whereas the Lie algebra correspondin®® 3 is
se3 : nwn 2w so3 .Sinceelementsafe3 canbe converted t8E 3
and vice versa, we can represent a rigid motion as elemesg®f Such an element is
calledtwist This is advantageous since a twist has only six parametghs an element
of SE 3 has twelve. Both have six degrees of freedom, though.
Elements ofso 3 andse3 can be written both as vectors w; w ws , X

Wi, Wo Wg Ny Np ng and as matrices:

0 W3 W R -
w ws 0 w so3 X se3 (2)
0310
W Wp 0

Atwist x se3 can be converted to an element of the Lie grélip SE 3 by the
exponential function expx M. This exponential can be computed ef ciently with
the Rodriguez formula. For further details we refer to [11].

2.2 Pose Estimation with 2-D—3-D Point Correspondences

Let g x be a 2-D-3-D point correspondence, ke. * is a point in homogeneous
coordinates on the 3-D silhouette of the object gnd 2 is its position in the image.
Furthermore,let  n m be the Plicker line [14] througland the respective camera
origin. The distance of any poiatto the lineL given in Pliicker form can be computed
by using the cross producta n m ,i.e.,a Lifandonlyif a n m 0.

Our goal is to nd a twistx such that the transformed points e)A(pxi are close to the
» ”

corresponding linek;. Linearizing the exponential function exab é?f Oi—! I x
(wherel is the identity matrix), we like to minimize with respectxo

o - 2 o - 2 .

a expxxiSlnim a Ixxiglnim min  (3)

I I
where the functions 1: 4 3 removes the last entry, which is 1. Evaluation yields
three linear equations of rank two for each correspondegice . Thus, to solve for the

6 twist parameters, we need at least three correspondesrcasihique solution. Usu-
ally, there are far more point correspondences and onersddeast squares problem,
which can be solved ef ciently with the Householder alglnit. Since the twisk only
corresponds to the pose change it is rather “small”. Thagalizing the exponential
function does not create large errors. Moreover, we itdhagaminimization process.

3 Region-based Model Fitting

Existing contour-based pose estimation algorithms exgeetxplicit contour to estab-
lish correspondences between contour points and pointhe@mbdel surface. This
involves a matching of the projected surface and the con@uir idea is to avoid ex-
plicit computations of contours and the contour matchimgtdad, we seek to adapt
the pose parameters in such a way that the projections ofitfece optimally split all
images into the object and the background region. For saitylive will describe this
setting for a single camera, but the concept is triviallyeexted to multiple views.



Fig. 2. From left to right: (a) Input image. The puncher is to be tracked. (b) Projeatiotine
model in an inaccurate pose onto the image (magni ed). Thervarked points are the points
referenced to in Section 3.2 (c) The 2-D contour of the pt@eqmagni ed). The arrows show
into which directions these points should move in our atfoni

3.1 Energy Model

Like in a segmentation task, we seek an optimal partitiomihthe image domaitV.
This can be expressed as minimization of the energy function

E x Pxqglogpr 1 Pxq logp: dq 4)
w

where the functior? x q 6 w 01 is1ifand only if the surface of the
3-D model with posex projects to the poing in the image planeR splits the image
domain into two parts, in each of which different featuretrdlisitions are expected.
These distributions are modeled by probability densitycfiomsp; and ps.

Note the similarity of (4) to variational segmentation nuth [4]. The important differ-
ence is that the partitioning is not represented by a conteuma function, but by only
six parameters. Moreover, there is no constraint on thettemighe boundary in (4).
The probability densities are modeled by local Gaussiatmilligions [4] of the color
in CIELAB color space, and texture in the texture featurecegaroposed in [5]. Since
there is only a limited amount of data available to estimbhgedensity functions, we
consider the separate feature channels to be independert, the total probability
density function is the product of the single channel désit

The densities are adapted when the estimated pose has dh&igen the projection
of the model, and hence a partitioning of the image into dtgad background region,
p1 andp, can be computed from the local mean and variance in thesen®gi

3.2 Minimization

We minimize (4) by computing force vectors along the conimplicitly given by the
projected surface. These force vectors indicate the diretd which the projection of
the model should move to minimiZe x . Using the framework from Section 2, we can
transfer this force to the 3-D points and estimate the cpaeding rigid body motion.
To this end, we create 2-D-3-D point correspondenges; by projecting silhouette
pointsx;, given the current pose, to the image plane where they yiejd If the function
valuep; i is greatertham; g , itis likely thatg; belongs to the interior of the object



For each frame:

Extrapolate new pose from previous poses and compute image features
- Project 3D objet model onto image plane
- Generate prob. density functions for inside/outside the proj. madedn 3.1)
- Adapt 2D-3D point correspondences; (q ,x ) tq (g; ,¥sction 3.2)
- Construct projection rays from (q';,x )
- Generate and solve system of equations to get a new(pasgen 2.2)

Fig. 3. Summary of the region-based pose tracking algorithm.

region. Thusg; will be shifted in inward normal direction to a new poipt Vice versa,
pointsq; where the inequality; g p2 g holds will be shifted in outward normal
direction. The normal direction is given P approximated with Sobel operators. The
lengthl: g g of the shift vector is a parameter. More advanced methodstbow
choosd - including scaling by logp; logp: , i.e. performing a gradient decent on
E - have been tested but results were worse for our sequences.

This conceptis illustrated in Figure 2. Figure 2b shows a&vpiincher, onto which the
surface model has been projected. Figure 2¢ depicts thedaoybetween the interior
and exterior of the projected model. Most of the points in ititerior are white. So
is the point marked by the right circle. Thus, it better tsttee statistical model of the
object region than to the background and is moved away frerlbiject. Vice-versa, the
marked cyan point on the left side is moved inwards as it bagdo the background.
We iterate this process. At some point, the pose changeséaddoy the force vec-
tors mutually cancel out. We stop iterating when the avepagge change after up to
three iterations is smaller than a given threshold. Befbanging frames in an image
sequence, we predict the object's pose in the new frame lepiip extrapolating the
results from the two previous frames. Figure 3 shows an éewref the algorithm.

4 Experiments

Figure 4 shows two frames of a monocular sequence, in whiahcalen toy giraffe has
been tracked with our method. The estimated pose ts wehéodbject in the image.
Figure 5 depicts tracking results of a stereo sequence, Birwooden beam moves
between the cameras and the static object. Then the tea Ipickesd up and rotated
several times. In the most challenging part of this sequghedea box is rotated around
two different axis simultaneously while the bottom of thexlve ects the background
and moving specular highlights are visible. Nevertheless,algorithm can track the
tea box accurately over all 395 frames of this sequence.

For this sequence, an average of 12.03 iterations were sggds reach the requested
threshold (0.1mm for translation, 0.001 for rotations}hvé maximum of 72 iterations.
Approximately 28.75 minutes of processor time were needexhdntel Pentium 4 with
3.2GHz ( 12 frames per minute), about 86% of which was used for pressing
(loading the images, computing texture features, etc.)enthie rest was spent in the
iteration steps. The parameters (i.e. the threshold phdve been optimized to yield
good poses. Faster but less accurate computations arblpossi explained below.



Fig. 4. From left to right: Input image, estimated pose and extracted contour for tarnds of

a color sequence with a wooden giraffep: Frame 52Bottom: Frame 68. The surface model
consists of a single closed point grid. Thus, itis possiblleok through the projected pose. Note
that this is irrelevant for contour-based pose estimatidiere only silhouette points are needed.

Figure 6 shows the time used by our program per frame. It car&ethat our algorithm
is faster in “easy” situations, e.g. when nothing has moV¥éis gure also shows the
changes in the translation and rotation parameters for tsie160 frames. Since tea
box and camera are static in these frames no changes shawid Gur results have a
standard deviation of about 1.79 degrees and 0.83mm.

When tracking objects that are clearly separated from tokdraund (e.g. the puncher
in Figure 2), features from the texture space can be neglectd the local Gaussian
model can be replaced by a global model. These changes aloijagdecrease the run-
time of our algorithm. For example, the teapot shown in Fégtithas been tracked in
a stereo sequence with more than one frame per second.fgrtexiture information,
the tea box sequence shown in Figure 5 can be tracked (wifhtisliless accurate re-
sults) in less than 4 minutes (104 frames per minute). This indicates that real-time
processing with a region-based approach is feasible.

5 Summary

We have presented an pose tracking algorithm from 2-D redjiimfiormation which
does not require a separate segmentation step. The ingaititioning of the image by
the projected object model is used for computing regiorissizg, which drive an evolu-
tion directly in the pose parameters. The algorithm can déalillumination changes,
cluttered background, partial occlusions, specular lagid and arbitrary rigid 3-D
models. Experiments show that the results compare well thods based on explicit
contour representations. However, our approach is coraitiefaster and close to real-
time performance.



Fig. 5. Pose results for a tea box. Each block shows the computed(phsg and the contour
(yellow) in the two views. The scene contains partial odoos (frame 97, top left), the tea box
is turned upside down (frame 230, top right), there are dpeca ections (frame 269, bottom
left) and the box is turned around different axes simultasgo(frame 277, bottom right).
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contours and poses are shown in yellow.
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