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urves andsurfa
es. Our proposal is an operational or kinemati
 approa
h based on the Lie groupSE(3). While in Eu
lidean spa
e the modelling of shape as orbit of a point under thea
tion of SE(3) is limited, we are embedding our problem into the 
onformal geometri
algebra R4;1 of the Eu
lidean spa
e R3 . This embedding results in a number of advan-tages whi
h makes the proposed method a universal and 
exible one with respe
t toappli
ations. It makes possible the robust and fast estimation of the pose of 3D obje
tsfrom in
omplete and noisy image data. Espe
ially advantagous is the equivalen
e of theproposed shape model to that of the Fourier representations.Key words: shape representation, 
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tionTwo obje
ts 
an be said to have the same shape if they are similar in thesense of Eu
lidean geometry. By leaving out the property of s
ale invarian
e,we 
an de�ne the shape of an obje
t as that geometri
 
on
ept that isinvariant under the spe
ial Eu
lidean group. Furthermore, we allow ourobje
ts to 
hange their shape in a well-de�ned manner under the a
tion ofsome external for
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4 G. Sommer, B. Rosenhahn and C. PerwassThe literature on shape modelling and appli
ations is vast. May it bevisualization and animation in 
omputer graphi
s or shape and motionre
ognition in 
omputer vision. The 
entral problem for the usefulness ineither �eld is the 
hosen representation of shape.Here we present a new approa
h to the modelling of free-form shapeof 
urves and surfa
es whi
h has some features that make it espe
iallyattra
tive for 
omputer vision and 
omputer graphi
s. In our appli
ations ofpose estimation of 3D obje
ts we 
ould easily handle in
omplete and noisyimage data for numeri
ally stable estimations with nearly video real-time
apability.That new representation results from the fusion of two 
on
epts:1) Free-form 
urves and surfa
es are modelled as the orbit of a pointunder the a
tion of the Lie group SE(3), 
aused by a set of 
oupledin�nitesimal generators of the group, 
alled twists (Murray et al., 1994).2) These obje
t models are embedded in the 
onformal geometri
 algebra(CGA) of the Eu
lidean spa
e R3 (Li et al., 2001), that is R4;1 . Onlyin 
onformal geometry the above mentioned modelling of shape unfoldsits ri
h set of useful features.The 
on
ept of fusing a lo
al with a global algebrai
 framework has beenproposed already in (Sommer, 1997). But only the pioneering work in (Liet al., 2001) made it feasible to 
onsider the Lie algebra se(3), the spa
e oftangents to an obje
t, embedded in R4;1 , as the sour
e of our shape modelinstead of using se(3) in R3 .The tight relations of geometry and kinemati
s are known to the math-emati
ians for 
enturies, see e.g. (Farouki, 2000). But in 
ontrast to mostappli
ations in me
hani
al engineering we are not restri
ted in our approa
hby physi
ally feasible motions nor will we get problems in generating spatial
urves or surfa
es.By embedding our design method into CGA, both primitive geometri
entities as points or obje
ts on the one side and a
tions on the other sidewill have algebrai
 representations in one single framework. Furthermore,obje
ts are de�ned by a
tions, and also a
tions 
an take on the role ofoperands.Our proposed kinemati
 de�nition of shape uses in�nitesimal a
tions togenerate global patterns of low intrinsi
 dimension. This phenomen 
orre-sponds to the interpretation of the spe
ial Eu
lidean group in CGA, SE(3),as a Lie group, where an element g 2 SE(3) performs a transformation ofan entity u 2 R4;1 , u0 = u(�) = g fu(0)g (1)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 5with respe
t to the parameter � of g. Any spe
ial g 2 SE(3) that representsa general rotation in CGA 
orresponds to a Lie group operator M 2 R+4;1whi
h is 
alled a motor and whi
h is applied by the bilinear spinor produ
tu0 =MufM ; (2)where fM is the reverse ofM . This produ
t indi
ates thatM is an orthogo-nal operator. If g is an element of the Lie group SE(3), than its in�nitesimalgenerator, �, is de�ned in the 
orresponding Lie algebra, that is � 2 se(3).That Lie algebra element of the rigid body motion is geometri
ally inter-preted as the rotation axis l in 
onformal spa
e. Then the motorM resultsfrom the exponential map of the generator l of the group element, whi
h is
alled a twist: M = exp ���2 l� : (3)While � is the rotation angle as the parameter of the motor, its generatoris de�ned by the �ve degrees of freedom of a line l in spa
e.In our approa
h, the motor M is the e�e
tive operator whi
h 
ausesarbitrarily 
omplex obje
t shape. This operator may result from the mul-tipli
ative 
oupling of a set of primitive motors fM iji = n; :::; 1g ;M =MnMn�1:::M 2M 1: (4)Ea
h of these motorsM i is representing a 
ir
ular motion of a point aroundits own axis.Based on that approa
h rather 
omplex free-form obje
ts 
an be de-signed whi
h behave as algebrai
 entities. That means, they 
an be trans-formed by motors in a 
ovariant and linear way. To handle 
omplete obje
tsin that way as unique entities makes sense from both a 
ognitive and anumeri
 point of view.The 
onformal geometri
 algebra R4;1 makes this possible. This is 
ausedby two essential fa
ts. First, the representation of the spe
ial Eu
lideangroup SE(3) in R4;1 as a subgroup of the 
onformal group C(3) is isomor-phi
 to the spe
ial orthogonal group SO+(4; 1). Hen
e, rigid body motion
an be performed as rotation in CGA and therefore has a 
ovariant rep-resentation. Se
ond, the basi
 geometri
 entity of the 
onformal geometri
algebra of the Eu
lidean spa
e is the sphere. All geometri
 entities derivedby in
iden
e operations from the sphere 
an be transformed in CGA by anelement g 2 SE(3), that is a motor M 2 R+4;1 , in the same linear way, justas a point in the homogeneous Eu
lidean spa
e R4 . Be
ause there exists adual representation of a sphere (and of all derived entities) in CGA, whi
h
onsiders points as the basi
 geometri
 entity of the Eu
lidean spa
e in



6 G. Sommer, B. Rosenhahn and C. Perwassthe 
onformal spa
e, all the known 
on
epts from Eu
lidean spa
e 
an betransformed to the 
onformal one.Finally, we 
an take advantage of the strati�
ation of spa
es by CGA.Sin
e the seminal paper (Faugeras, 1995) the purposive use of strati�edgeometries be
ame an important design prin
iple of vision systems. Thismeans that an observer in dependen
e of its possibilities and needs 
anhave a

ess to di�erent geometries as proje
tive, aÆne or metri
 ones. Sofar this 
ould hardly be realized. In CGA we have quite another situation.The CGA R4;1 is a linear spa
e of dimension 32. This mighty spa
erepresents not only 
onformal geometry but also aÆne geometry. Note thatthe spe
ial Eu
lidean group is a spe
ial aÆne group. Be
ause R4;1 is derivedfrom the Eu
lidean spa
e R3 , it en
loses also Eu
lidean geometry, whi
his represented by the geometri
 algebra R3;0 . In addition, the proje
tivegeometri
 algebra R3;1 is en
losed in R4;1 . Thus, we have the strati�
ationof the geometri
 algebras R3;0 � R3;1 � R4;1 . This enables to 
onsidermetri
 (Eu
lidean), proje
tive and kinemati
 (aÆne) problems in one singlealgebrai
 framework.2. Rigid Body Motion in Conformal Geometri
 AlgebraAfter giving a bird's eye view on the 
onstru
tion of a geometri
 algebraand on the features of the 
onformal geometri
 algebra, we will present thepossibilities of representing the rigid body motion in CGA.2.1. SOME CONSTRUCTIVE PRINCIPLES OF A GEOMETRIC ALGEBRAA geometri
 algebra (GA) Rp;q;r is a linear spa
e of dimension 2n, n =p + q + r , whi
h results from a ve
tor spa
e Rp;q;r . We 
all (p; q; r) thesignature of the ve
tor spa
e of dimension n. This indi
ates that there arep=q=r unit ve
tors ei whi
h square to +1=� 1=0, respe
tively. While n = pin 
ase of the Eu
lidean spa
e R3 , Rp;q;r indi
ates a ve
tor spa
e with ametri
 di�erent than the Eu
lidean one. In the 
ase of r 6= 0 there is adegenerate metri
. We will omit the signature indexes from right if theinterpretation is unique, as in the 
ase of R3 .The basi
 produ
t of a GA is the geometri
 produ
t, indi
ated by juxta-position of the operands. This produ
t is asso
iative and anti
ommutative.There 
an be used a lot of other produ
t forms in CA too, as the outerprodu
t (^) and the inner produ
t (�).The spa
e Rp;q;r is spanned by a set of 2n linear subspa
es of di�erentgrade 
alled blades. Giving the blades a geometri
 interpretation makes thedi�eren
e of a GA from a Cli�ord algebra. A blade of grade k, a k-bladeBhki, results from the outer produ
t of k independent ve
tors fa1; :::;akg 2



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 7Rp;q;r � hRp;q;r i1, Bhki = a1 ^ ::: ^ ak = ha1:::akik; (5)where h�i is the grade operator. There are lk = �nk� di�erent blades of gradek, Bhkij ; j = 1; :::; lk. If e0 2 Rp;q;r , e0 � 1, is the unit s
alar element ande1:::n 2 Rp;q;r , e1:::n � e1:::en � I, is the unit pseudos
alar element ofthe GA, then Bh0i is the s
alar blade and Bhni � I is the pseudos
alarblade. Hen
e, nPk=0 lk = 2n is the dimension of the GA. Blades are dire
tednumbers, thus Ihki = ei1 ^ :::^eik gives the dire
tion of a blade. Any linear
ombination Ak = l�Xj=1 �jBhkij ; l� � lk ; �j 2 R (6)is 
alled a k-ve
tor, Ak 2 hRp;q;r ik. This ri
h stru
ture of a GA 
an befurther in
reased by the linear 
ombination of k-ve
tors,A = k�Xk=k� �kAk ; 0 � k� < k� � n ; �k 2 R (7)Here A is 
alled a (general) multive
tor. It is 
omposed of 
omponents ofdi�erent grade. The multive
tor may result from the geometri
 produ
t ofan r-ve
tor Ar with an s-ve
tor Bs,A = ArBs = hArBrijr�sj + hArBsijr�sj+2 + :::+ hArBsir+s (8)with the pure inner produ
tAr �Bs = hArBsijr�sj (9)and the pure outer produ
tAr ^Bs = hArBsir+s: (10)All other 
omponents of A result from a mixture of inner and outer prod-u
ts. The produ
t of two multive
tors,A andB, 
an always be de
omposedin the sum of an even and an odd 
omponent,AB = 12(AB +BA) + 12(AB �BA): (11)In the 
ase of the produ
t of two ve
tors, a and b, a; b 2 hRp;q;ri1, we getab = 12(ab+ ba) + 12(ab� ba) = a � b+ a ^ b (12)= habi0 + habi2 = �+A2 (13)



8 G. Sommer, B. Rosenhahn and C. Perwasswith � 2 hRp;q;r i0 and A2 2 hRp;q;r i2.An important 
on
ept of a GA is that of duality. This means that it ispossible to 
hange the blade base of a multive
tor A 2 Rp;q;r . Its dual iswritten as A� and is de�ned asA� = A � I�1; (14)where I is the unit pseudos
alar of Rp;q;r . In the 
ase where Ak 2 hRp;q;rikthe dual is given by A�k = An�k 2 hRp;q;rin�k. The duality expresses therelations between the inner produ
t null spa
e, IPNS, and the outer produ
tnull spa
e, OPNS, of a multive
tor, see (Perwass and Hildenbrand, 2003).The OPNS de�nes a 
ollinear subspa
e of dimension k to a k-blade Bhki �Rp;q;r whi
h is given by all x 2 Rp;q;r so thatx ^Bhki = 0: (15)The IPNS de�nes a subspa
e of Rp;q;r whi
h is orthogonal to a k-bladeBhki � Rp;q;r and, hen
e x �Bhki = 0: (16)2.2. CGA OF THE EUCLIDEAN SPACEThe 
onformal geometry of Eu
lidean and non-Eu
lidean spa
es is knownfor a long time (Yaglom, 1988) without giving strong impa
t on the mod-elling in engineering with the ex
eption of ele
tri
al engineering. There aredi�erent representations of the 
onformal geometry. Most disseminated isa 
omplex formulation (Needham, 1997). Based on an idea in (Hestenes,1984), in (Li et al., 2001) and in two other papers of the same authors in(Sommer, 2001), the 
onformal geometries of the Eu
lidean, spheri
al andhyperboli
 spa
es have been worked out in the framework of GA.The basi
 approa
h is that a 
onformal geometri
 algebra (CGA) Rp+1;q+1is built from a pseudo-Eu
lidean spa
e Rp+1;q+1 . If we start with an Eu-
lidean spa
e Rn , the 
onstru
tion Rn+1;1 = Rn � R1;1 , � being the dire
tsum, uses a plane with Minkowski signature for augmenting the basis ofRn by the additional basis ve
tors fe+;e�g with e2+ = 1 and e2� = �1.Be
ause that model 
an be interpreted as a homogeneous stereographi
proje
tion of all points x 2 Rn to points x 2 Rn+1;1 , this spa
e is 
alled thehomogeneous model of Rn . Furthermore, by repla
ing the basis fe+;e�gwith the basis fe;e0g, the homogeneous stereographi
 representation willbe
ome a representation of null ve
tors. This is 
aused by the propertiese2 = e20 = 0 and e � e0 = �1. The relation between the null basis fe;e0gand the basis fe+;e�g is given bye := (e� + e+) and e0 := 12(e� � e+): (17)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 9Any point x 2 Rn transforms to a point x 2 Rn+1;1 a

ording tox = x+ 12x2e+ e0 (18)with x2 = 0. In fa
t, any point x 2 Rn+1;1 is lying on an n-dimensionalsubspa
e Nne � Rn+1;1 , 
alled horosphere (Li et al., 2001). The horosphereis a non-Eu
lidean model of the Eu
lidean spa
e Rn .It must be mentioned that the basis ve
tors e and e0 have a geometri
interpretation. In fa
t, e 
orresponds the north pole and e0 
orresponds thesouth pole of the hypersphere of the stereographi
 proje
tion, embedded inRn+1;1 . Thus, e is representing the points at in�nity and e0 is representingthe origin of Rn in the spa
e Rn+1;1 .By setting apart these two points from all others of the Rn makes Rn+1;1a homogeneous spa
e in the sense that ea
h x 2 Rn+1;1 is a homogeneousnull ve
tor without having referen
e to the origin. This enables 
oordinate-free 
omputing to a large extent. Hen
e, x 2 Nne 
onstitutes an equivalen
e
lass f�x; � 2 Rg on the horosphere. The redu
tion of that equivalen
e 
lassto a unique entity with metri
al equivalen
e to the point x 2 Rn needs anormalization.The CGA R4;1 , derived from the Eu
lidean spa
e R3 , o�ers 32 bladesas basis of that linear spa
e. This ri
h stru
ture enables one to representlow order geometri
 entities in a hierar
hy of grades. These entities 
anbe derived as solutions of either the IPNS or the OPNS depending onwhat we assume as the basis geometri
 entity of the 
onformal spa
e, see(Perwass and Hildenbrand, 2003). So far we only 
onsidered the mappingof an Eu
lidean point x 2 R3 to a point x 2 N3e � R4;1 . But the nullve
tors on the horosphere are only a spe
ial subset of all the ve
tors ofR4;1 . All the ve
tors of R4;1 are representing spheres as the basi
 entitiesof the 
onformal spa
e. A sphere s 2 R4;1 is de�ned by its 
enter position,
 2 R3 , and its radius � 2 R a

ording tos = 
+ 12(
� �)2e+ e0: (19)And be
ause s2 = �2 > 0; it must be a non-null ve
tor. A point x 2 N3e
an be 
onsidered as a degenerate sphere of radius zero. Hen
e, spheres sand points x are entities of grade 1. By taking the outer produ
t of spheressi, other entities of higher grade 
an be 
onstru
ted. So we get a 
ir
le z(grade 2), whi
h exists outside the null 
one in R4;1 ,z = s1 ^ s2 (20)as solution of the IPNS. If we 
onsider the OPNS on the other hand, we arestarting with points xi 2 N3e and 
an pro
eed similarly to de�ne a 
ir
le Z



10 G. Sommer, B. Rosenhahn and C. Perwassand a sphere S as entities of grade 3 and 4 derived from points xi on thenull 
one of R4;1 a

ording toZ = x1 ^ x2 ^ x3 (21)S = x1 ^ x2 ^ x3 ^ x4: (22)These sets of entities are obviously related by the duality u� = U .Finally, X = e ^ xis 
alled the aÆne representation of a point (Li et al., 2001). This represen-tation of a point is used if the interplay of the proje
tive with the 
onformalrepresentation is of interest in appli
ations as in (Rosenhahn, 2003). Withrespe
t to lines l and planes p or L and P we refer the reader to (Sommeret al., 2004).Let us 
ome ba
k to the strati�
ation of spa
es mentioned in Se
tion1. Let be x 2 Rn a point of the Eu
lidean spa
e, X 2 Rn;1 a point of theproje
tive spa
e and X 2 Rn+1;1 a point of the 
onformal spa
e. Then theoperations whi
h transform the representation between the spa
es are forR3 �! R3;1 �! R4;1 X = e ^X = e ^ (x+ e�); (23)and for R4;1 �! R3;1 �! R3x = � XX � e� = ((e+ �X) ^ e�) � e�(e+ �X) � e� � (24)2.3. THE SPECIAL EUCLIDEAN GROUP IN CGAA geometry is de�ned by its basi
 entity, the geometri
 transformationgroup whi
h is a
ting in a linear and 
ovariant manner on all the entitieswhi
h are 
onstru
ted from the basi
 entity by in
iden
e operations, andthe resulting invarian
es with respe
t to that group. The sear
h for su
h ageometry was motivated in Se
tion 1. Next we want to spe
ify the requiredfeatures of the spe
ial Eu
lidean group in CGA.To make a geometry a proper one, we have to require that any a
tionA of that group on an entity, say u, is grade preserving, or in other wordsstru
ture preserving. This makes it ne
essary that the operator A appliesas versor produ
t (Perwass and Sommer, 2002)Afug = AuA�1: (25)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 11This means that the entity u should transform 
ovariantly (Dorst andFontijne, 2004). If u is 
omposed by e.g. two representants u1 and u2of the basis entities of the geometry, then u should transform a

ording toAfug = Afu1 Æ u2g = (Au1A�1) Æ (Au2A�1) = AuA�1: (26)The invariants of the 
onformal group C(3) in R3 are angles. The 
onformalgroup C(3) is mighty (Needham, 1997), but other than (25) and (26) it isnonlinear and transforms not 
ovariantly in R3 . Besides, in R3 there existno entities other than points whi
h 
ould be transformed.As we have shown in Se
tion 2.2, in R4;1 the situation is quite di�erentbe
ause all the geometri
 entities derived there 
an be seen also as algebrai
entities in the sense of Se
tion 1. Not only the elements of the null 
onetransform 
ovariantly but also those of the dual spa
e of R4;1 . Furthermore,the representation of the 
onformal group C(3) in R4;1 has the requiredproperties of (25) and (26), see (Li et al., 2001). All ve
tors with positivesignature in R4;1 , that is a sphere, a plane as well as the 
omponentsinversion and re
e
tion of C(3) 
ompose a multipli
ative group. That is
alled the versor representation of C(3). This group is isomorphi
 to theLorentz group of R4;1 . The subgroup, whi
h is 
omposed by produ
ts of aneven number of these ve
tors, is the spin group Spin+(4; 1), that is the spinrepresentation of O+(4; 1). To that group belong the subgroups of rotation,translation, dilatation, and transversion of C(3). They are applied as aspinor S, S 2 R+4;1 and SeS = jSj2. A rotor R;R 2 hR4;1i2 and RR2 = 1,is a spe
ial spinor. Rotation and translation are represented in R4;1 asrotors.The spe
ial Eu
lidean group SE(3) is de�ned by SE(3) = SO(3)�R3 .Therefore, the rigid body motion g = (R; t), g 2 SE(3) of a point x 2 R3writes in Eu
lidean spa
ex0 = g fxg = Rx+ t: (27)Here R is a rotation matrix and t is a translation ve
tor. Be
ause SE(3) �C(3), in our 
hoi
e of a spe
ial rigid body motion the representation ofSE(3) in CGA is isomorphi
 to the spe
ial orthogonal group, SO+(4; 1).Hen
e, su
h g 2 SE(3) does not represent the full s
rew, but a generalrotation in R4;1 , that is the rotation axis in R3 is shifted out of the originby the translation ve
tor t.That transformation g 2 SE(3) is represented in CGA by a spe
ialrotor M , 
alled a motor, M 2 hR4;1i2. The motor may be written as inequation (3). To spe
ify the line l 2 hR4;1i2 by the rotation and translationin R3 , the motor has to be de
omposed into its rotation and translation
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omponents. The normal rotation in CGA is given by the rotorR = exp ���2 l� (28)with l 2 hR3i2 indi
ating the rotation plane whi
h passes the origin. Thetranslation in CGA is given by a spe
ial rotor, 
alled a translator,T = exp �et2 � (29)with t 2 hR3 i1 as the translation ve
tor. Rotors 
onstitute a multipli
ativegroup. If we interprete the rotor R as that entity of R4;1 whi
h should betransformed by translation in a 
ovariant manner, thenM = TReT : (30)We 
all this spe
ial motor representation the twist representation. Its ex-ponential form is given byM = exp �12et� exp ���2 l� exp ��12et� : (31)This equation expresses the shift of the rotation axis l� in the plane l bythe ve
tor t to perform the normal rotation and �nally shifting ba
k theaxis.Be
ause SE(3) is a Lie group, the line l 2 hR4;1i2 is the representa-tion of the in�nitesimal generator of M , � 2 se(3). We 
all the generatorrepresentation a twist be
ause it represents rigid body motion as generalrotation. It is parameterized by the position and orientation of l whi
h arethe Pl�u
ker 
oordinates, represented by the rotation plane l and the innerprodu
t (t � l), (Rosenhahn, 2003),l = l+ e(t � l): (32)The twist model of the rigid body motion, equation (30), is that one weare using in that paper. The most general formulation of the rigid bodymotion is the s
rew motion (Rooney, 1978). But instead of presenting thatin detail, we refer the reader to the report (Sommer et al., 2004).A motor M transforms 
ovariantly any entity u 2 R4;1 a

ording tou0 =MufM (33)with u0 2 R4;1 . An equivalent equation is valid for the dual entity U 2 R4;1 .Be
ause motors 
on
atenate multipli
atively, a multiple-motor transforma-tion of u resolves re
ursively. Let be M =M2M1, thenu00 =MufM =M2M1ufM1fM2 =M2u0fM2: (34)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 13It is a feature of any GA that also 
omposed entities, whi
h are built bythe outer produ
t of other ones, transform 
ovariantly by a linear transfor-mation. This is 
alled outermorphism (Hestenes, 1991) and it means thepreservation of the outer produ
t under linear transformations. FollowingSe
tion 1, this is an important feature of the 
hosen algebrai
 embeddingthat will be demonstrated in Se
tion 3.3. Shape Models from Coupled TwistsIn this se
tion we will approa
h step by step the kinemati
 design of alge-brai
 and trans
endental 
urves and surfa
es by 
oupling a 
ertain set oftwists as generators of a multiple-parameter Lie group a
tion.3.1. THE KINEMATIC CHAIN AS MODEL OF CONSTRAINED MOTIONIn the pre
eding se
tion we argued that ea
h entity ui 
ontributing to therigid model of another entity u is performing the same transformation,represented by the motor M . Now we assume an ordered set of non-rigidly
oupled rigid 
omponents of an obje
t. Su
h model is 
alled a kinemati

hain (Murray et al., 1994). In a kinemati
 
hain the task is to formulatethe net movement of the end-e�e
tor at the n-th joint by movements ofthe j-th joints, j = 1; :::; n � 1, if the 0-th joint is �xed 
oupled witha world 
oordinate system. These movements are dis
ribed by the motorsM j. Let Tj be the transformation of an atta
hed joint j with respe
t to thebase 
oordinate system, then for j = 1; :::; n the point xj;ij ; ij = 1; :::;mj ,transforms a

ording toTj(xj;ij ;M j) =M1:::M jxj;ijfM j:::fM 1 (35)and T0(x0;i0) = x0;i0 : (36)The motors M j are representing the 
exible geometry of the kinemati

hain very eÆ
iently. This results in an obje
t model O de�ned by akinemati
 
hain with n segments and des
ribed by any geometri
 entityuj;ij 2 R4;1 atta
hed to the j-th segment,O = �T0(u0;i0);T1(u1;i1 ;M1); :::;Tn(un;in ;Mn)jn; i0; :::; in 2 N	 : (37)If uj;ij is performing a motion 
aused by the motor M , thenu0j;ij = M �Tj(uj;ij ;M j)� fM (38)= M(M 1:::M juj;ijfM j :::fM 1)fM : (39)



14 G. Sommer, B. Rosenhahn and C. Perwass3.2. THE OPERATIONAL MODEL OF SHAPEWe will now introdu
e another type of 
onstrained motion, whi
h 
an berealized by physi
al systems only in spe
ial 
ases but should be understoodas a generalization of a kinemati
 
hain. This is our proposed model ofoperational or kinemati
 shape (Rosenhahn, 2003). An operational shapemeans that a shape results from the net e�e
t, that is the orbit, of a pointunder the a
tion of a set of 
oupled operators. So the operators at the endare the representations of the shape. A kinemati
 shape means the shape forwhi
h these operators are the motors as representations of SE(3) in R4;1 .The prin
iple is simple. It goes ba
k to the interpretation of any g 2 SE(3)as a Lie group a
tion (Murray et al., 1994), see equation (1). But only inR4;1 we 
an take advantage of its representation as rotation around the axisl, see equations (3), (30) and (31).In Se
tion 2.2 we introdu
ed the sphere and the 
ir
le from IPNS andOPNS, respe
tively. We 
all these de�nitions the 
anoni
al ones. On theother hand, a 
ir
le has an operational de�nition whi
h is given by thefollowing. Let x� be a point whi
h is a mapping of another point x0 byg 2 SE(3) in R4;1 . This may be written asx� =M�x0fM� (40)with M� being the motor whi
h rotates x0 by an angle �,M� = exp ���2	� : (41)Here again is 	 the twist as a generator of the rotation around the axis l, seeequation (3). Note that 	 = �l; � 2 R. If � 
overs densely the whole span[0; :::; 2�℄, then the generated set of points �x�	 is also dense. The in�niteset �x�	 is the orbit of a rotation 
aused by the in�nite set fM�g, whi
hhas the shape of a 
ir
le in R3 . The set fx�g represents the well-knownsubset 
on
ept in a ve
tor spa
e of geometri
 obje
ts in analyti
 geometry.In fa
t, that 
ir
le is on the horosphere N3e be
ause it is 
omposed onlyby points. We will write for the 
ir
le zf1g instead of �x�	 to indi
ate thedi�erent nature of that 
ir
le in 
omparison to either z or Z of Se
tion2.2. The index f1g means that the 
ir
le is generated by one twist from a
ontinuous argument �. So the 
ir
le, embedded in R4;1 , is de�ned byzf1g = �x�j for all � 2 [0; :::; 2�℄	 : (42)Its radius is given by the distan
e of the 
hosen point x0 to the axis l whoseorientation and position in spa
e depends on the parameterization of l. Thatzf1g is de�ned by an in�nite set of arguments is no real problem in the 
ase
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omputational geometry or appli
ations where only dis
retized shape isof interest. More interesting is the fa
t that in the 
anoni
al de�nitionsof Se
tion 2.2 the geometri
 entities are all derived from either spheres orpoints. In the 
ase of the operational de�nition of shape, the 
ir
le is thebasi
 geometri
 entity instead, respe
tively rotation is the basi
 operation.A sphere results from the 
oupling of two motors,M�1 andM�2 , whosetwist axes meet at the 
enter of the sphere and whi
h are perpendi
ularlyarranged.The resulting 
onstrained motion of a point x0;0 performs a rotation ona sphere given by �1 2 [0; :::; 2�℄ and �2 2 [0; :::; �℄,x�1;�2 =M�2M�1x0;0fM�1fM�2 : (43)The 
omplete orbit of a sphere is given bysf2g = �x�1;�2 j for all �1 2 [0; :::; 2�℄ ; �2 2 [0; :::; �℄	 : (44)Let us 
ome ba
k to the point of generalization of the well-knownkinemati
 
hains. These models of linked bar me
hanisms have to be phys-i
ally feasible. Instead, our model of 
oupled twists is not limited by that
onstraint. Therefore, the sphere expresses a virtual 
oupling of twists.This in
ludes both lo
ation and orientation in spa
e, and the possibility of�xating several twists at the same lo
ation, for any dimension of the spa
eRn . There are several extensions of the introdu
ed kinemati
 model whi
hare only possible in CGA.First, while the group SE(3) 
an only a
t on points, its representationin R4;1 may a
t in the same way on any entity u 2 R4;1 derived from eitherpoints or spheres. This results in high 
omplex free-form shapes 
ausedfrom the motion of relatively simple generating entities and low order setsof 
oupled twists.Se
ond, only by 
oupling a 
ertain set of twists, high 
omplex free-formshapes may be generated from a 
omplex enough 
onstrained motion of apoint.Let ufng be the shape generated by n motors M�1 ; :::;M�n . We 
all itthe n-twist model,ufng = �x�1;:::;�nj for all �1; :::; �n 2 [0; :::; 2�℄	 (45)with x�1;:::;�n =M�n :::M�1x0;:::;0fM�1 :::fM�n : (46)



16 G. Sommer, B. Rosenhahn and C. Perwass3.3. FREE-FORM OBJECTSThere are a lot of more degrees of freedom to design free-form obje
tsembedded in R4;1 by the motion of a point 
aused by 
oupled twists.While a single rotation-like motor generates a 
ir
le, a single translation-likemotor generates a line as a root of non-
urved obje
ts. Of 
ourse, several ofboth variants 
an be mixed. Other degrees of freedom of the design resultfrom the following extensions:� Introdu
ing an individual angular frequen
y �i to the motor M�i alsoin
uen
es the syn
hronization of the rotation angles �i.� Rotation within limited angular segments �i 2 [�i1 ; :::; �i2 ℄ with 0 ��i1 < �i2 � 2� is possible.Let us 
onsider the simple example of a 2-twist model of shape,uf2g = �x�1;�2 j for all �1; �2 2 [0; :::; 2�℄	 (47)with x�1;�2 =M�2�2M�1�1x0fM�1�1fM�2�2 ; (48)�1; �2 2 R and �1 = �2 = � 2 [0; :::; 2�℄.That model 
an generate not only a sphere, but an ellipse (�1 = �2; �2 =1), several well-known algebrai
 
urves (in spa
e), see (Rosenhahn, 2003),su
h as 
ardioid, nephroid or deltoid, trans
endental 
urves like a spiral, orsurfa
es. For the list of examples see Table I.Interestingly, the order of nonlinearity of algebrai
 
urves grows fasterthan the number of the generating motors.3.4. EXTENSIONS OF THE CONCEPTSBy repla
ing the initial point x0 by any other geometri
 entity, u0, builtfrom either points or spheres by applying the outer produ
t, the 
on
eptsremain the same. This makes the kinemati
 obje
t model in 
onformal spa
ea re
ursive one.The in�nite set of arguments �i of the motorM�i to generate the entityufng will in pra
ti
e redu
e to a �nite one, whi
h results in a dis
rete entityu[n℄. The index [n℄ indi
ates that n twists are used with a �nite set ofarguments f�i;ji jji 2 f0; :::;migg.The previous formulations of free-form shape did assume a rigid model.As in the 
ase of the kinemati
 
hain, the model 
an be made 
exible. Thishappens by en
apsulating the entity u[n℄ into a set of motors �Mdj jj = J; :::; 1	,whi
h results in a deformation of the obje
t.ud[n℄ =MdJ :::M d1u[n℄fMd1:::fM dJ (49)
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 entities generated from up to three twistsEntity Generation Classpoint twist axis interse
ted with a point 0twist 
urve
ir
le twist axis non-
ollinear with a point 1twist 
urveline twist axis is at in�nity 1twist 
urve
oni
 2 parallel non-
ollinear twists 2twist 
urve �1 = 1; �2 = �2line segment 2 twists, building a degenerate 
oni
 2twist 
urve �1 = 1; �2 = �2
ardioid 2 parallel non-
ollinear twists 2twist 
urve �1 = 1; �2 = 1nephroid 2 parallel non-
ollinear twists 2twist 
urve �1 = 1; �2 = 2rose 2 parallel non-
ollinear twists, j loops 2twist 
urve �1 = 1; �2 = �jspiral 1 �nite and 1 in�nite twist 2twist 
urve �1 = 1; �2 = 1sphere 2 perpendi
ular twists 2twist surfa
e �1 = 1; �2 = 1plane 2 parallel twists at in�nity 2twist surfa
e
ylinder 2 twists, one at in�nity 2twist surfa
e
one 2 twists, one at in�nity 2twist surfa
equadri
 a 
oni
 rotated with a third twist 3twist surfa
eFinally, the entity ud[n℄ may perform a motion under the a
tion of a motorM , whi
h itself may be 
omposed by a set of motors fM iji = I; :::; 1ga

ording to equation (4), ud0[n℄ =Mud[n℄fM : (50)But a twist is not only an operator but it may play in CGA also the roleof an operand, 	0 =M	M : (51)This 
auses a dynami
 shape model as an alternative to (49).So far, the entity ufng was embedded in the Eu
lidean spa
e. Lifting upthe entity to the 
onformal spa
e, ufng 2 R4;1 , is simply done byufng = e ^ �ufng + e�� = e ^Ufng (52)with Ufng being the shape in the proje
tive spa
e R3;1 .



18 G. Sommer, B. Rosenhahn and C. Perwass4. Twist Models and Fourier RepresentationsThe message of the last subse
tion is the following. A �nite set of 
oupledtwist (or nested motors) performs a 
onstrained motion of any set of ge-ometri
 entities, whose orbit uniquely represents either a 
urve, a surfa
eor a volume of arbitrary 
omplexity. This needs a parameterized modelof the generators of the shape. In some appli
ations the reverse problemmay be of interest. That is to �nd a parameterized twist model for a givenshape. That task 
an be solved: Any 
urve, surfa
e or volume of arbitrary
omplexity 
an be mapped to a �nite set of 
oupled twists, but in a non-unique manner. That means, that there are di�erent models whi
h generatethe same shape.We will show here that there is a dire
t and intuitive relation betweenthe twist model of shape and the Fourier representations. The Fourier seriesde
omposition and the Fourier transforms in their di�erent representationsare well-known te
hniques of signal analysis and image pro
essing. Theinteresting fa
t that this equivalen
e of representations results in a fusionof 
on
epts from geometry, kinemati
s, and signal theory is of great im-portan
e in engineering. Furthermore, be
ause the presented modelling ofshape is embedded in a 
onformal spa
e, there is also a single a

ess forembedding the Fourier representations in either 
onformal or proje
tivegeometry. This is quite di�erent from the re
ent publi
ation (Turski, 2004).4.1. THE CASE OF A CLOSED PLANAR CURVELet us 
onsider a 
losed 
urve 
 2 R2 in a parametri
 representation witht 2 R. Then its Fourier series representation is given by
(t) = 1X�=�1 
� exp �j2��tT � (53)with the Fourier 
oeÆ
ients 
� , � 2 Z as frequen
y and j, j2 = �1, as theimaginary unit and T as the 
urve length.This model of a 
urve has been used for a long time in image pro
essingfor shape analysis by Fourier des
riptors (these are the Fourier 
oeÆ
ients)(Zahn and Roskies, 1972).We will translate this spe
tral representation into the model of anin�nite number of 
oupled twists by following the method presented in(Rosenhahn et al., 2004). Be
ause equation (53) is valid in an Eu
lideanspa
e, the twist model has to be reformulated a

ordingly. This will beshown for the 
ase of a 2-twist 
urve 
f2g based on equation (27). Then
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an be written in R3 for �1 = �2 = � asx� = R�2� �(R�1�(x0 � t1)eR�1� + t1)� t2� eR�2� + t2 (54)= p0 + V 1;�p1 eV 1;� + V 2;�p2 eV 2;�: (55)Here the translation ve
tors have been absorbed by the ve
tors pi and theV i are built by 
ertain produ
ts of the rotors R�i�. We 
all the pi the phaseve
tors. Next, for the aim of interpreting that equation as a Fourier seriesexpansion, we rewrite the Fourier basis fun
tions as rotors of an angularfrequen
y i 2 Z, in the plane l 2 R2 ; l2 = �1,R�i� = exp ���i�2 l� = exp ���i�T l� : (56)All rotors of a planar 
urve lie in the same plane as the phase ve
tors pi.After some algebra, see (Rosenhahn et al., 2004), we get for the transformedpoint x� = 2Xi=0 pi exp �2�i�T l� (57)and for the 
urve as subspa
e of R3 the in�nite set of points
f2g = fx�j for all � 2 [0; :::; 2�℄ and for all i 2 f0; 1; 2gg : (58)A general (planar) 
urve is given by
f1g = fx�j for all � 2 [0; :::; 2�℄ and for all i 2 Zg ; (59)respe
tively as Fourier series expansion, written in the language of kine-mati
s 
f1g = ( limn�!1 nXi=�npi exp �2�i�T l�) (60)= ( limn�!1 nXi=�nR�i�pi eR�i�) : (61)A dis
retized 
urve is 
alled a 
ontour. In that 
ase equation (60) has to
onsider a �nite model of n twists and the Fourier series expansion be
omesthe inverse dis
rete Fourier transform. Hen
e, a planar 
ontour is givenby the �nite sequen
e 
[n℄ with the 
ontour points 
k;�n � k � n, inparametri
 representation
k = nXi=�npi exp � 2�ik2n+ 1 l� ; (62)
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tors are 
omputed as a dis
rete Fourier transform of the
ontour pi = 12n+ 1 nXk=�n 
k exp �� 2�ik2n+ 1 l� : (63)These equations imply that the angular argument �k is repla
ed by k.4.2. EXTENSIONS OF THE CONCEPTSThe extension of the modelling of a planar 
urve, embedded in R3 , to a 3D
urve is easily done. This happens by taking its proje
tions to either e12,e23, or e31 as periodi
 planar 
urves. Hen
e, we get the superposition ofthese three 
omponents. Let 
j[n℄ be these 
omponents in the 
ase of a 3D
ontour with the rotation axes l�j perpendi
ular to the rotation planes lj.Then 
[n℄ = 3Xj=1 
j[n℄ (64)with the 
ontour points of the proje
tions 
jk, j = 1; 2; 3 and �n � k � n,
jk = nXi=�npji exp � 2�ik2n+ 1 lj� : (65)Another useful extension is with respe
t to surfa
e representations, see(Rosenhahn et al., 2004). If this surfa
e is a 2D fun
tion orthogonal to aplane spanned by the bive
tors eij, then the twist model 
orresponds tothe 2D inverse FT. In the 
ase of an arbitrary orientation of the rotationplanes lj instead, or in the 
ase of the surfa
e of a 3D obje
t, the pro
edureis 
omparable to that of equation (65). The surfa
e is represented as atwo-parametri
 surfa
e s(t1; t2) as superposition of the three proje
tionssj(t1; t2).In the 
ase of a dis
rete surfa
e in a two-parametri
 representation wehave the �nite surfa
e representation s[n1;n2℄,s[n1;n2℄ = 3Xj=1 sj[n1;n2℄ (66)with the surfa
e points of the proje
tions sjk1;k2 , j = 1; 2; 3 and �n1 � k1 �n1, �n2 � k2 � n2,sjk1;k2 = n1Xi1=�n1 n2Xi2=�n2 pji1;i2 exp � 2�i1k12n1 + 1 lj� exp � 2�i2k22n2 + 1 lj� (67)
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torspji1;i2 = 12n1 + 1 12n2 + 1pj0i1;i2 (68)pj0i1;i2 = n1Xk1=�n1 n2Xk2=�n2 sjk1;k2 exp�� 2�i1k12n1 + 1 lj� exp�� 2�i2k22n2 + 1 lj� (69)Finally, we will give the hint to an alternative model of a 
urve 
 2 R4;1 , see(Rosenhahn, 2003). While equation (60) expresses the additive superposi-tion of rotated phase ve
tors in Eu
lidean spa
e, the multipli
ative 
ouplingof the twists dire
tly in 
onformal spa
e is possible.The dis
ussed equivalen
e of the twist model and the Fourier repre-sentation has several advantages in pra
ti
al use of the model. The mostimportant may be the appli
ability to low-frequen
y approximations of theshape. For instan
e in pose estimation (Rosenhahn, 2003) the estimations ofthe motion parameters of non-
onvex obje
ts 
an be regularized eÆ
ientlyin that way. Instead of estimating motors, the parameters of the twists areestimated be
ause of numeri
 reasons.5. Summary and Con
lusionsWe presented an operational or kinemati
 model of shape in R3 . This modelis based on the Lie group SE(3), embedded in the 
onformal geometri
 alge-bra R4;1 of the Eu
lidean spa
e. While the modelling of shape in R3 
ausedby a
tions of SE(3) is limited, a lot of advantages result from the 
hosenalgebrai
 embedding in real appli
ations. As one of these the possibility of
onformal (and proje
tive) shape models should be mentioned. We did notdis
uss any appli
ations in detail. Instead, we refer the reader to the websitehttp://www.ks.informatik.uni-kiel.de with respe
t to the problem of poseestimation. In that work we 
ould show that the pose estimation based onthe presented shape model 
an 
ope with in
omplete and noisy data. Inaddition to that robustness the pose estimation is numeri
ally stable andfast.Be
ause the 
hosen twist model is equivalent to the Fourier representa-tion (in some aspe
ts it over
omes that), the proposed shape representationuni�es geometry, kinemati
s, and signal theory. It 
an be expe
ted that thiswill have a great impa
t on both theory and pra
ti
e in 
omputer vision,
omputer graphi
s and modelling of me
hanisms.An extended version of this paper 
an be found as report (Sommer etal., 2004).
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