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Abstract. We give a contribution to the representation problem of free-form curves and
surfaces. Our proposal is an operational or kinematic approach based on the Lie group
SE(3). While in Euclidean space the modelling of shape as orbit of a point under the
action of SE(3) is limited, we are embedding our problem into the conformal geometric
algebra R4,1 of the Euclidean space R?. This embedding results in a number of advan-
tages which makes the proposed method a universal and flexible one with respect to
applications. It makes possible the robust and fast estimation of the pose of 3D objects
from incomplete and noisy image data. Especially advantagous is the equivalence of the
proposed shape model to that of the Fourier representations.
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1. Introduction

Two objects can be said to have the same shape if they are similar in the
sense of Euclidean geometry. By leaving out the property of scale invariance,
we can define the shape of an object as that geometric concept that is
invariant under the special Euclidean group. Furthermore, we allow our
objects to change their shape in a well-defined manner under the action of
some external forces.

* This work has been partially supported (G.S. and C.P.) by EC Grant IST-2001-3422
(VISATEC), by DFG Grant RO 2497/1-1 (B.R.), and by DFG Graduiertenkolleg No.
357 (B.R. and C.P.).
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The literature on shape modelling and applications is vast. May it be
visualization and animation in computer graphics or shape and motion
recognition in computer vision. The central problem for the usefulness in
either field is the chosen representation of shape.

Here we present a new approach to the modelling of free-form shape
of curves and surfaces which has some features that make it especially
attractive for computer vision and computer graphics. In our applications of
pose estimation of 3D objects we could easily handle incomplete and noisy
image data for numerically stable estimations with nearly video real-time
capability.

That new representation results from the fusion of two concepts:

1) Free-form curves and surfaces are modelled as the orbit of a point
under the action of the Lie group SF(3), caused by a set of coupled
infinitesimal generators of the group, called twists (Murray et al., 1994).

2) These object models are embedded in the conformal geometric algebra
(CGA) of the Euclidean space R? (Li et al., 2001), that is Ry ;. Only
in conformal geometry the above mentioned modelling of shape unfolds
its rich set of useful features.

The concept of fusing a local with a global algebraic framework has been
proposed already in (Sommer, 1997). But only the pioneering work in (Li
et al., 2001) made it feasible to consider the Lie algebra se(3), the space of
tangents to an object, embedded in Ry 1, as the source of our shape model
instead of using se(3) in R3.

The tight relations of geometry and kinematics are known to the math-
ematicians for centuries, see e.g. (Farouki, 2000). But in contrast to most
applications in mechanical engineering we are not restricted in our approach
by physically feasible motions nor will we get problems in generating spatial
curves or surfaces.

By embedding our design method into CGA, both primitive geometric
entities as points or objects on the one side and actions on the other side
will have algebraic representations in one single framework. Furthermore,
objects are defined by actions, and also actions can take on the role of
operands.

Our proposed kinematic definition of shape uses infinitesimal actions to
generate global patterns of low intrinsic dimension. This phenomen corre-
sponds to the interpretation of the special Euclidean group in CGA, SE(3),
as a Lie group, where an element g € SE(3) performs a transformation of
an entity u € Ry 1,

u' = u(f) = g{u(0)} (1)
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with respect to the parameter 6 of g. Any special g € SFE(3) that represents
a general rotation in CGA corresponds to a Lie group operator M € RII
which is called a motor and which is applied by the bilinear spinor product

u' = MuM, (2)

where M is the reverse of M. This product indicates that M is an orthogo-
nal operator. If ¢ is an element of the Lie group SFE(3), than its infinitesimal
generator, £, is defined in the corresponding Lie algebra, that is £ € se(3).
That Lie algebra element of the rigid body motion is geometrically inter-
preted as the rotation axis [ in conformal space. Then the motor M results
from the exponential map of the generator I of the group element, which is
called a twist:

v o (). .

While 0 is the rotation angle as the parameter of the motor, its generator
is defined by the five degrees of freedom of a line [ in space.

In our approach, the motor M is the effective operator which causes
arbitrarily complex object shape. This operator may result from the mul-
tiplicative coupling of a set of primitive motors {M;|i =n,...,1},

M = M,M, ;..M>M;. (4)

Each of these motors M is representing a circular motion of a point around
its own axis.

Based on that approach rather complex free-form objects can be de-
signed which behave as algebraic entities. That means, they can be trans-
formed by motors in a covariant and linear way. To handle complete objects
in that way as unique entities makes sense from both a cognitive and a
numeric point of view.

The conformal geometric algebra Ry 1 makes this possible. This is caused
by two essential facts. First, the representation of the special Euclidean
group SE(3) in Ry ; as a subgroup of the conformal group C(3) is isomor-
phic to the special orthogonal group SO™(4,1). Hence, rigid body motion
can be performed as rotation in CGA and therefore has a covariant rep-
resentation. Second, the basic geometric entity of the conformal geometric
algebra of the Euclidean space is the sphere. All geometric entities derived
by incidence operations from the sphere can be transformed in CGA by an
element g € SE(3), that is a motor M € R4+,1’ in the same linear way, just
as a point in the homogeneous Euclidean space R*. Because there exists a
dual representation of a sphere (and of all derived entities) in CGA, which
considers points as the basic geometric entity of the Euclidean space in
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the conformal space, all the known concepts from Euclidean space can be
transformed to the conformal one.

Finally, we can take advantage of the stratification of spaces by CGA.
Since the seminal paper (Faugeras, 1995) the purposive use of stratified
geometries became an important design principle of vision systems. This
means that an observer in dependence of its possibilities and needs can
have access to different geometries as projective, affine or metric ones. So
far this could hardly be realized. In CGA we have quite another situation.

The CGA Ry, is a linear space of dimension 32. This mighty space
represents not only conformal geometry but also affine geometry. Note that
the special Euclidean group is a special affine group. Because Ry ; is derived
from the Euclidean space R?, it encloses also Euclidean geometry, which
is represented by the geometric algebra Rs . In addition, the projective
geometric algebra R3 ; is enclosed in Ry ;. Thus, we have the stratification
of the geometric algebras Rz C R3; C Ry;. This enables to consider
metric (Euclidean), projective and kinematic (affine) problems in one single
algebraic framework.

2. Rigid Body Motion in Conformal Geometric Algebra

After giving a bird’s eye view on the construction of a geometric algebra
and on the features of the conformal geometric algebra, we will present the
possibilities of representing the rigid body motion in CGA.

2.1. SOME CONSTRUCTIVE PRINCIPLES OF A GEOMETRIC ALGEBRA

A geometric algebra (GA) Ry, is a linear space of dimension 2", n =
p + g+ r , which results from a vector space RP:¢". We call (p,q,r) the
signature of the vector space of dimension n. This indicates that there are
p/q/r unit vectors e; which square to +1/ — 1/0, respectively. While n = p
in case of the Euclidean space R?, RP:%" indicates a vector space with a
metric different than the Euclidean one. In the case of r # 0 there is a
degenerate metric. We will omit the signature indexes from right if the
interpretation is unique, as in the case of R?.

The basic product of a GA is the geometric product, indicated by juxta-
position of the operands. This product is associative and anticommutative.
There can be used a lot of other product forms in CA too, as the outer
product (A) and the inner product (-).

The space R, ,, is spanned by a set of 2" linear subspaces of different
grade called blades. Giving the blades a geometric interpretation makes the
difference of a GA from a Clifford algebra. A blade of grade k, a k-blade
By, results from the outer product of k independent vectors {a1, ..., ax} €
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RO = (Rp 0.0 )1,

B<k> =ai1 N... Nag = (al...ak>k, (5)

where (-) is the grade operator. There are [, = (Z) different blades of grade
ky By g =1, 1. If €g € Ry 4, €0 = 1, is the unit scalar element and
ei.n € Ryyr, €.n = er...e, = I, is the unit pseudoscalar element of
the GA, then B is the scalar blade and B,y = I is the pseudoscalar

n
blade. Hence, > [, = 2" is the dimension of the GA. Blades are directed
k=0

numbers, thus I,y = e;, A... Ae;, gives the direction of a blade. Any linear
combination

l*
A = Za’jB(k)j , 1<y, aj € R (6)
7=1

is called a k-vector, Ay € (R, 4, ). This rich structure of a GA can be
further increased by the linear combination of k-vectors,

k*
A= BA, . 0<ke<k*<n,pBreR (7)
k=k.

Here A is called a (general) multivector. It is composed of components of
different grade. The multivector may result from the geometric product of
an r-vector A, with an s-vector By,

A=A,B;=(AB;),_5 +(ArByg)|,_g42 + - + (ArBy)r s (8)
with the pure inner product
A, B; = (A;Bs)|, (9)
and the pure outer product
A; NBs = (A;Bg)rs. (10)

All other components of A result from a mixture of inner and outer prod-
ucts. The product of two multivectors, A and B, can always be decomposed
in the sum of an even and an odd component,

1 1
AB = §(AB+BA)+§(AB—BA). (11)
In the case of the product of two vectors, @ and b, a,b € (R, ,,)1, we get
1 1
ab = E(ab—i-ba)ﬁ-a(ab—ba):a-b—i—a/\b (12)
= (ab)o + (ab)s = a + A (13)
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with a € (R 4,)0 and Ay € (R, 4, )2.

An important concept of a GA is that of duality. This means that it is
possible to change the blade base of a multivector A € R, ,,. Its dual is
written as A" and is defined as

A*=A T, (14)

where I is the unit pseudoscalar of R, , ;. In the case where A, € (R, )k
the dual is given by A} = A, € (Ry,,)n—k. The duality expresses the
relations between the inner product null space, IPNS, and the outer product
null space, OPNS, of a multivector, see (Perwass and Hildenbrand, 2003).
The OPNS defines a collinear subspace of dimension £ to a k-blade By C

R, 4 which is given by all £ € R”%" so that

x N\ B<k> =0. (15)

The IPNS defines a subspace of R, ,, which is orthogonal to a k-blade
By C Ry 4,y and, hence

z- By =0. (16)

2.2. CGA OF THE EUCLIDEAN SPACE

The conformal geometry of Euclidean and non-Euclidean spaces is known
for a long time (Yaglom, 1988) without giving strong impact on the mod-
elling in engineering with the exception of electrical engineering. There are
different representations of the conformal geometry. Most disseminated is
a complex formulation (Needham, 1997). Based on an idea in (Hestenes,
1984), in (Li et al., 2001) and in two other papers of the same authors in
(Sommer, 2001), the conformal geometries of the Euclidean, spherical and
hyperbolic spaces have been worked out in the framework of GA.

The basic approach is that a conformal geometric algebra (CGA) Ry41 441
is built from a pseudo-Euclidean space RPT19+! If we start with an Eu-
clidean space R”, the construction R**1! = R* @ R""!, @ being the direct
sum, uses a plane with Minkowski signature for augmenting the basis of
R™ by the additional basis vectors {e,,e_} with e2 = 1 and e? = —1.
Because that model can be interpreted as a homogeneous stereographic
projection of all points & € R” to points & € R"*t1:1 | this space is called the
homogeneous model of R”. Furthermore, by replacing the basis {e;,e_}
with the basis {e, eg}, the homogeneous stereographic representation will
become a representation of null vectors. This is caused by the properties
e’ =e? =0 and e- ey = —1. The relation between the null basis {e, eq}
and the basis {e,e_} is given by

e:=(e_+e;) and e:= %(e, —e4). (17)
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Any point € R” transforms to a point & € R"*"! according to
L 5
z=x+ e+ e (18)

with £2 = 0. In fact, any point £ € R"*1! is lying on an n-dimensional
subspace N C R"*11 called horosphere (Li et al., 2001). The horosphere
is a non-Euclidean model of the Euclidean space R™.

It must be mentioned that the basis vectors e and ey have a geometric
interpretation. In fact, e corresponds the north pole and ey corresponds the
south pole of the hypersphere of the stereographic projection, embedded in
R?*L1 Thus, e is representing the points at infinity and eq is representing
the origin of R in the space R"+1!,

By setting apart these two points from all others of the R” makes R**!!
a homogeneous space in the sense that each z € R**"! is a homogeneous
null vector without having reference to the origin. This enables coordinate-
free computing to a large extent. Hence, £ € N/ constitutes an equivalence
class { Az, A € R} on the horosphere. The reduction of that equivalence class
to a unique entity with metrical equivalence to the point £ € R" needs a
normalization.

The CGA Ry, derived from the Euclidean space R3, offers 32 blades
as basis of that linear space. This rich structure enables one to represent
low order geometric entities in a hierarchy of grades. These entities can
be derived as solutions of either the IPNS or the OPNS depending on
what we assume as the basis geometric entity of the conformal space, see
(Perwass and Hildenbrand, 2003). So far we only considered the mapping
of an Euclidean point & € R3? to a point z € N3 c R»'. But the null
vectors on the horosphere are only a special subset of all the vectors of
RH1.All the vectors of R*! are representing spheres as the basic entities
of the conformal space. A sphere s € Rb! is defined by its center position,
c € R3, and its radius p € R according to

1 2
§:c+§(c—p)e+eg. (19)
And because 82 = p? > 0, it must be a non-null vector. A point z € N3
can be considered as a degenerate sphere of radius zero. Hence, spheres s
and points & are entities of grade 1. By taking the outer product of spheres
8,, other entities of higher grade can be constructed. So we get a circle z
(grade 2), which exists outside the null cone in R*!,

z = 81 /N\8y (20)

as solution of the IPNS. If we consider the OPNS on the other hand, we are
starting with points ; € N2 and can proceed similarly to define a circle Z
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and a sphere S as entities of grade 3 and 4 derived from points z; on the
null cone of Ry 1 according to

= T Ny N3 (21)
= Ty N2y N3 N\ zy. (22)

I IN

These sets of entities are obviously related by the duality u* = U.
Finally,

X=eNz

is called the affine representation of a point (Li et al., 2001). This represen-
tation of a point is used if the interplay of the projective with the conformal
representation is of interest in applications as in (Rosenhahn, 2003). With
respect to lines I and planes p or L and P we refer the reader to (Sommer
et al., 2004). B

Let us come back to the stratification of spaces mentioned in Section
1. Let be € R” a point of the Euclidean space, X € R™! a point of the
projective space and X € R*t1:1 a point of the conformal space. Then the
operations which transform the representation between the spaces are for
Ry — Ry — Ry

X=eNX=eA(x+e_), (23)
and for R47] — ng] — Rg

X ((es X)ne)-e
T X e T (e X) e 24

2.3. THE SPECIAL EUCLIDEAN GROUP IN CGA

A geometry is defined by its basic entity, the geometric transformation
group which is acting in a linear and covariant manner on all the entities
which are constructed from the basic entity by incidence operations, and
the resulting invariances with respect to that group. The search for such a
geometry was motivated in Section 1. Next we want to specify the required
features of the special Euclidean group in CGA.

To make a geometry a proper one, we have to require that any action
A of that group on an entity, say w, is grade preserving, or in other words
structure preserving. This makes it necessary that the operator A applies
as versor product (Perwass and Sommer, 2002)

A{u} = Aud™". (25)
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This means that the entity w should transform covariantly (Dorst and
Fontijne, 2004). If u is composed by e.g. two representants u; and wus
of the basis entities of the geometry, then u should transform according to

Afu} = A{uyocuy} = (Au A ) o (AusA™") = AuA™", (26)

The invariants of the conformal group C(3) in R? are angles. The conformal
group C(3) is mighty (Needham, 1997), but other than (25) and (26) it is
nonlinear and transforms not covariantly in R3. Besides, in R? there exist
no entities other than points which could be transformed.

As we have shown in Section 2.2, in Ry ; the situation is quite different
because all the geometric entities derived there can be seen also as algebraic
entities in the sense of Section 1. Not only the elements of the null cone
transform covariantly but also those of the dual space of Ry ;. Furthermore,
the representation of the conformal group C(3) in Ry; has the required
properties of (25) and (26), see (Li et al., 2001). All vectors with positive
signature in Ry, that is a sphere, a plane as well as the components
inversion and reflection of C(3) compose a multiplicative group. That is
called the versor representation of C(3). This group is isomorphic to the
Lorentz group of R4 ;. The subgroup, which is composed by products of an
even number of these vectors, is the spin group Spin™(4, 1), that is the spin
representation of O (4, 1). To that group belong the subgroups of rotation,
translation, dilatation, and transversion of C(3). They are applied as a
spinor S, § € R}, and SS =|S|%. A rotor R,R € (Ry1)2 and RR? = 1,
is a special Spinér. Rotation and translation are represented in Ry as
rotors.

The special Euclidean group SE(3) is defined by SE(3) = SO(3) @ R3.
Therefore, the rigid body motion g = (R, t), g € SE(3) of a point € R3
writes in Euclidean space

' =gl{x} =Rz +t (27)

Here R is a rotation matrix and ¢ is a translation vector. Because SFE(3) C
C(3), in our choice of a special rigid body motion the representation of
SE(3) in CGA is isomorphic to the special orthogonal group, SO (4,1).
Hence, such g € SE(3) does not represent the full screw, but a general
rotation in Ry ;, that is the rotation axis in R? is shifted out of the origin
by the translation vector .

That transformation g € SFE(3) is represented in CGA by a special
rotor M, called a motor, M € (R4 ;)>. The motor may be written as in
equation (3). To specify the line I € (R4 ;)2 by the rotation and translation
in R?, the motor has to be decomposed into its rotation and translation
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components. The normal rotation in CGA is given by the rotor

ne oo () s

with I € (Rg)2 indicating the rotation plane which passes the origin. The
translation in CGA is given by a special rotor, called a translator,

T = exp (%;) (29)

with ¢ € (Rs); as the translation vector. Rotors constitute a multiplicative
group. If we interprete the rotor R as that entity of Ry ; which should be
transformed by translation in a covariant manner, then

M = TRT. (30)

We call this special motor representation the twist representation. Its ex-
ponential form is given by

v o () (D)o ()

This equation expresses the shift of the rotation axis I* in the plane I by
the vector t to perform the normal rotation and finally shifting back the
axis.

Because SE(3) is a Lie group, the line I € (Ry )2 is the representa-
tion of the infinitesimal generator of M, ¢ € se(3). We call the generator
representation a twist because it represents rigid body motion as general
rotation. It is parameterized by the position and orientation of [ which are
the Pliicker coordinates, represented by the rotation plane I and the inner
product (t - 1), (Rosenhahn, 2003),

I=l+e(t-). (32)

The twist model of the rigid body motion, equation (30), is that one we
are using in that paper. The most general formulation of the rigid body
motion is the screw motion (Rooney, 1978). But instead of presenting that
in detail, we refer the reader to the report (Sommer et al., 2004).

A motor M transforms covariantly any entity w € Ry ; according to

u = MEM (33)

with ' € Ry ;. An equivalent equation is valid for the dual entity U € Ry ;.
Because motors concatenate multiplicatively, a multiple-motor transforma-
tion of u resolves recursively. Let be M = MyM, then

ENZMEM:MQM]EM]MQ:MQE,MQ‘ (34)
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It is a feature of any GA that also composed entities, which are built by
the outer product of other ones, transform covariantly by a linear transfor-
mation. This is called outermorphism (Hestenes, 1991) and it means the
preservation of the outer product under linear transformations. Following
Section 1, this is an important feature of the chosen algebraic embedding
that will be demonstrated in Section 3.

3. Shape Models from Coupled Twists

In this section we will approach step by step the kinematic design of alge-
braic and transcendental curves and surfaces by coupling a certain set of
twists as generators of a multiple-parameter Lie group action.

3.1. THE KINEMATIC CHAIN AS MODEL OF CONSTRAINED MOTION

In the preceding section we argued that each entity u; contributing to the
rigid model of another entity u is performing the same transformation,
represented by the motor M. Now we assume an ordered set of non-rigidly
coupled rigid components of an object. Such model is called a kinematic
chain (Murray et al., 1994). In a kinematic chain the task is to formulate
the net movement of the end-effector at the n-th joint by movements of
the j-th joints, 7 = 1,...,m — 1, if the 0-th joint is fixed coupled with
a world coordinate system. These movements are discribed by the motors
M ;. Let T; be the transformation of an attached joint j with respect to the
base coordinate system, then for 7 = 1,...,n the point gj,i]_,ij =1,...,mj,
transforms according to

and
771@0,1:0) = Z0ig- (36)

The motors M are representing the flexible geometry of the kinematic
chain very efficiently. This results in an object model O defined by a
kinematic chain with n segments and described by any geometric entity
;. € R4 attached to the j-th segment,

0= {Wl(ﬂoyio)aﬂ(ﬂ]’ilaMl)a "'77;1,(yn,inaMn)‘na7:Ua 17‘71 € N} . (37)

If Wi is performing a motion caused by the motor M, then

H,’j,ij =M (E(Ej,ijﬂMj)> M (38)

= M(M,..M;u;, M;..M)M. (39)
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3.2. THE OPERATIONAL MODEL OF SHAPE

We will now introduce another type of constrained motion, which can be
realized by physical systems only in special cases but should be understood
as a generalization of a kinematic chain. This is our proposed model of
operational or kinematic shape (Rosenhahn, 2003). An operational shape
means that a shape results from the net effect, that is the orbit, of a point
under the action of a set of coupled operators. So the operators at the end
are the representations of the shape. A kinematic shape means the shape for
which these operators are the motors as representations of SE(3) in Ry ;.
The principle is simple. It goes back to the interpretation of any g € SE(3)
as a Lie group action (Murray et al., 1994), see equation (1). But only in
Ry4,1 we can take advantage of its representation as rotation around the axis
1, see equations (3), (30) and (31).

In Section 2.2 we introduced the sphere and the circle from IPNS and
OPNS, respectively. We call these definitions the canonical ones. On the
other hand, a circle has an operational definition which is given by the
following. Let z, be a point which is a mapping of another point z, by
g € SE(3) in Ry ;. This may be written as

Ly = M¢£0]\7¢ (40)

with M 4 being the motor which rotates x, by an angle ¢,

M, = exp (§\y> (41)

Here again is ¥ the twist as a generator of the rotation around the axis [, see
equation (3). Note that ¥ = al,a € R. If ¢ covers densely the whole span
[0, ..., 27], then the generated set of points {§¢} is also dense. The infinite
set {§¢} is the orbit of a rotation caused by the infinite set {M 4}, which
has the shape of a circle in R®. The set {z4} represents the well-known
subset concept in a vector space of geometric objects in analytic geometry.
In fact, that circle is on the horosphere N? because it is composed only
by points. We will write for the circle zZ4) instead of {Q(z)} to indicate the
different nature of that circle in comparison to either z or Z of Section
2.2. The index {1} means that the circle is generated by one twist from a
continuous argument ¢. So the circle, embedded in Ry, is defined by

zgy = {zy| for all ¢ € [0, ..., 21]} . (42)

Its radius is given by the distance of the chosen point &, to the axis I whose
orientation and position in space depends on the parameterization of I. That
zy1) is defined by an infinite set of arguments is no real problem in the case
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of computational geometry or applications where only discretized shape is
of interest. More interesting is the fact that in the canonical definitions
of Section 2.2 the geometric entities are all derived from either spheres or
points. In the case of the operational definition of shape, the circle is the
basic geometric entity instead, respectively rotation is the basic operation.

A sphere results from the coupling of two motors, M 4, and M 4,, whose
twist axes meet at the center of the sphere and which are perpendicularly
arranged.

The resulting constrained motion of a point , ; performs a rotation on
a sphere given by ¢; € [0,...,27] and ¢y € [0, ..., 7],

Ly po = M¢2 M¢1£0,0M¢1 MdJZ' (43)
The complete orbit of a sphere is given by
E {zy4, 4,| for all ¢, €0,....27] , 2 € [0,..., 7]} . (44)

Let us come back to the point of generalization of the well-known
kinematic chains. These models of linked bar mechanisms have to be phys-
ically feasible. Instead, our model of coupled twists is not limited by that
constraint. Therefore, the sphere expresses a virtual coupling of twists.
This includes both location and orientation in space, and the possibility of
fixating several twists at the same location, for any dimension of the space
R™. There are several extensions of the introduced kinematic model which
are only possible in CGA.

First, while the group SFE(3) can only act on points, its representation
in Ry ; may act in the same way on any entity u € Ry ; derived from either
points or spheres. This results in high complex free-form shapes caused
from the motion of relatively simple generating entities and low order sets
of coupled twists.

Second, only by coupling a certain set of twists, high complex free-form
shapes may be generated from a complex enough constrained motion of a
point.

Let wuy,) be the shape generated by n motors M, , ..., My, . We call it
the n-twist model,

Uppy = {g(bl’___’%\ for all ¢1, ..., ¢, € [0, ...,27r]} (45)
with

£¢1,~~~,¢n = M¢n...M¢1§0’“ UM¢1"'M¢n' (46)
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3.3. FREE-FORM OBJECTS

There are a lot of more degrees of freedom to design free-form objects
embedded in R4 ; by the motion of a point caused by coupled twists.
While a single rotation-like motor generates a circle, a single translation-like
motor generates a line as a root of non-curved objects. Of course, several of
both variants can be mixed. Other degrees of freedom of the design result
from the following extensions:

— Introducing an individual angular frequency A; to the motor M 4, also
influences the synchronization of the rotation angles ¢;.

— Rotation within limited angular segments ¢; € [, ..., a;,] with 0 <
i, < @, < 2w is possible.

Let us consider the simple example of a 2-twist model of shape,

Uioy = {24, 4,] for all g1, ¢y € [0, ..., 27]} (47)
with
Loipy = M)\2¢2M)\1¢120M>\1¢1M>\2¢27 (48)
A1, A2 € R and gb] = (,252 = (]5 € [0,...,27‘(‘].
That model can generate not only a sphere, but an ellipse (A = —2, Ay =

1), several well-known algebraic curves (in space), see (Rosenhahn, 2003),
such as cardioid, nephroid or deltoid, transcendental curves like a spiral, or
surfaces. For the list of examples see Table 1.

Interestingly, the order of nonlinearity of algebraic curves grows faster
than the number of the generating motors.

3.4. EXTENSIONS OF THE CONCEPTS

By replacing the initial point &, by any other geometric entity, w,, built
from either points or spheres by applying the outer product, the concepts
remain the same. This makes the kinematic object model in conformal space
a recursive one.

The infinite set of arguments ¢; of the motor M 4, to generate the entity
Uy will in practice reduce to a finite one, which results in a discrete entity
up,)- The index [n] indicates that n twists are used with a finite set of
arguments {¢; ;.|7; € {0,...,m;}}.

The previous formulations of free-form shape did assume a rigid model.
As in the case of the kinematic chain, the model can be made flexible. This
happens by encapsulating the entity w, into a set of motors {M‘]i\j =J, ..., 1},
which results in a deformation of the object.

—~d —d
ufyy = M5.. My, M,.M, (49)
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TABLE I. Simple geometric entities generated from up to three twists
Entity Generation Class
point twist axis intersected with a point Otwist curve
circle twist axis non-collinear with a point 1twist curve
line twist axis is at infinity 1twist curve
conic 2 parallel non-collinear twists 2twist curve A1 = 1, Ao = —2
line segment | 2 twists, building a degenerate conic 2twist curve Ay = 1, Ay = —2
cardioid 2 parallel non-collinear twists 2twist curve Ay =1, A2 =1
nephroid 2 parallel non-collinear twists 2twist curve A1 = 1, Ao = 2
rose 2 parallel non-collinear twists, j loops | 2twist curve A1 = 1, Ao = —j
spiral 1 finite and 1 infinite twist 2twist curve A1 = 1, A2 =1
sphere 2 perpendicular twists 2twist surface A1 =1, A2 =1
plane 2 parallel twists at infinity 2twist surface
cylinder 2 twists, one at infinity 2twist surface
cone 2 twists, one at infinity 2twist surface
quadric a conic rotated with a third twist 3twist surface

Finally, the entity gf | may perform a motion under the action of a motor

n

M, which itself may be composed by a set of motors {M;li=1,...,1}
according to equation (4),
d d g

But a twist is not only an operator but it may play in CGA also the role

of an operand,
V' = MUM. (51)

This causes a dynamic shape model as an alternative to (49).
So far, the entity uy,) was embedded in the Euclidean space. Lifting up
the entity to the conformal space, Uy € Ry, is simply done by
Uy =€ N (U{n} + e,) =eA U{n} (52)

with U,y being the shape in the projective space Rs ;.
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4. Twist Models and Fourier Representations

The message of the last subsection is the following. A finite set of coupled
twist (or nested motors) performs a constrained motion of any set of ge-
ometric entities, whose orbit uniquely represents either a curve, a surface
or a volume of arbitrary complexity. This needs a parameterized model
of the generators of the shape. In some applications the reverse problem
may be of interest. That is to find a parameterized twist model for a given
shape. That task can be solved: Any curve, surface or volume of arbitrary
complexity can be mapped to a finite set of coupled twists, but in a non-
unique manner. That means, that there are different models which generate
the same shape.

We will show here that there is a direct and intuitive relation between
the twist model of shape and the Fourier representations. The Fourier series
decomposition and the Fourier transforms in their different representations
are well-known techniques of signal analysis and image processing. The
interesting fact that this equivalence of representations results in a fusion
of concepts from geometry, kinematics, and signal theory is of great im-
portance in engineering. Furthermore, because the presented modelling of
shape is embedded in a conformal space, there is also a single access for
embedding the Fourier representations in either conformal or projective
geometry. This is quite different from the recent publication (Turski, 2004).

4.1. THE CASE OF A CLOSED PLANAR CURVE

Let us consider a closed curve ¢ € R? in a parametric representation with
t € R. Then its Fourier series representation is given by

c(t) = i Y exp (ﬂ;”t> (53)

V=—00

with the Fourier coefficients ,, v € Z as frequency and j, 52 = —1, as the
imaginary unit and T" as the curve length.

This model of a curve has been used for a long time in image processing
for shape analysis by Fourier descriptors (these are the Fourier coefficients)
(Zahn and Roskies, 1972).

We will translate this spectral representation into the model of an
infinite number of coupled twists by following the method presented in
(Rosenhahn et al., 2004). Because equation (53) is valid in an Euclidean
space, the twist model has to be reformulated accordingly. This will be
shown for the case of a 2-twist curve ¢,y based on equation (27). Then
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equation (48) can be written in Ry for ¢ = ¢9 = ¢ as

Ty = Ry ((RA1¢(mo —t) Ry + 1) - tz) R4+t (54)
= py+ V1,¢P1‘~/1,¢ + V2,¢p2‘72,¢- (55)

Here the translation vectors have been absorbed by the vectors p, and the
V; are built by certain products of the rotors Ry, 4. We call the p; the phase
vectors. Next, for the aim of interpreting that equation as a Fourier series
expansion, we rewrite the Fourier basis functions as rotors of an angular
frequency i € Z, in the plane I € Ry, I? = —1,

Ry, 4 = exp <>\;¢l> = exp <%¢l> (56)

All rotors of a planar curve lie in the same plane as the phase vectors p;.
After some algebra, see (Rosenhahn et al., 2004), we get for the transformed
point

2 .
25 =Y P exp (27;¢l) (57)
1=0

and for the curve as subspace of R3 the infinite set of points
oy = {zy| for all ¢ € [0, ..., 27] and for alli € {0,1,2}}. (58)
A general (planar) curve is given by
Cioo} = {zy| for all ¢ € [0, ..., 27| and for alli € Z}, (59)

respectively as Fourier series expansion, written in the language of kine-

matics
_ - 2mih
Cloc) = {nh_rpoo Y piexp ( T l)} (60)

i=—n
n o~
i=—n

A discretized curve is called a contour. In that case equation (60) has to
consider a finite model of n twists and the Fourier series expansion becomes
the inverse discrete Fourier transform. Hence, a planar contour is given
by the finite sequence cp,) with the contour points ¢, —n < k < n, in
parametric representation

" o2mik
Ch= Y Pjexp il (62)

i=—n
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and the phase vectors are computed as a discrete Fourier transform of the
contour

1 i 2mik ’ (63)
. = Cl. €X — .
b 2n +1 . k OXP 2n +1

=—Nn

These equations imply that the angular argument ¢;, is replaced by k.

4.2. EXTENSIONS OF THE CONCEPTS

The extension of the modelling of a planar curve, embedded in R?, to a 3D
curve is easily done. This happens by taking its projections to either eo,
es3, or ez as periodic planar curves. Hence, we get the superposition of
these three components. Let cfn] be these components in the case of a 3D

contour with the rotation axes l; perpendicular to the rotation planes [;.
Then

cm) = 2 €y (64)

with the contour points of the projections c,i, j=123and —n <k <mn,

2mik
Ck = Z p7 exp (2n+ 1lj> . (65)

=—n

Another useful extension is with respect to surface representations, see
(Rosenhahn et al., 2004). If this surface is a 2D function orthogonal to a
plane spanned by the bivectors e;;, then the twist model corresponds to
the 2D inverse FT. In the case of an arbitrary orientation of the rotation
planes [; instead, or in the case of the surface of a 3D object, the procedure
is comparable to that of equation (65). The surface is represented as a
two-parametric surface s(t1,%2) as superposition of the three projections
Sj (t1 y tg).

In the case of a discrete surface in a two-parametric representation we
have the finite surface representation s, ;]

3

s[n1:n2 anl,ng (66)

J=1

with the surface points of the projections sith, j=1,2,3and —n; <k <
ny, —ng < ko < no,

27r'i]k] 271’2‘2]{:2
Sy = Z Z Pl ;, ex (r] +1lj) exp (7277,2—1-1”) (67)

1=—N1 12=—"N2
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and the phase vectors

j 1 1 i1
Piois = op 1 2my + 17002 (68)

5! - 2 i 27r1]1k1 271’7:2]{,‘2
Phi= D, D Sky ky €XP _TlJrllj exp —ml_y‘ (69)

ki=—n1 ka=—no

Finally, we will give the hint to an alternative model of a curve ¢ € Ry 1, see
(Rosenhahn, 2003). While equation (60) expresses the additive superposi-
tion of rotated phase vectors in Euclidean space, the multiplicative coupling
of the twists directly in conformal space is possible.

The discussed equivalence of the twist model and the Fourier repre-
sentation has several advantages in practical use of the model. The most
important may be the applicability to low-frequency approximations of the
shape. For instance in pose estimation (Rosenhahn, 2003) the estimations of
the motion parameters of non-convex objects can be regularized efficiently
in that way. Instead of estimating motors, the parameters of the twists are
estimated because of numeric reasons.

5. Summary and Conclusions

We presented an operational or kinematic model of shape in R?. This model
is based on the Lie group SE(3), embedded in the conformal geometric alge-
bra Ry ; of the Euclidean space. While the modelling of shape in R3 caused
by actions of SFE(3) is limited, a lot of advantages result from the chosen
algebraic embedding in real applications. As one of these the possibility of
conformal (and projective) shape models should be mentioned. We did not
discuss any applications in detail. Instead, we refer the reader to the website
http://www.ks.informatik.uni-kiel.de with respect to the problem of pose
estimation. In that work we could show that the pose estimation based on
the presented shape model can cope with incomplete and noisy data. In
addition to that robustness the pose estimation is numerically stable and
fast.

Because the chosen twist model is equivalent to the Fourier representa-
tion (in some aspects it overcomes that), the proposed shape representation
unifies geometry, kinematics, and signal theory. It can be expected that this
will have a great impact on both theory and practice in computer vision,
computer graphics and modelling of mechanisms.

An extended version of this paper can be found as report (Sommer et
al., 2004).
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